
MINISTRY OF SCIENCE AND HIGHER EDUCATION OF THE RUSSIAN FEDERATION

Federal State Autonomous Educational Institution of Higher Education

“South Ural State University (National Research University)”
School of Electrical Engineering and Computer Science

Department of Computer Science

THESIS IS CHECKED

Reviewer

PhD, Associate Professor

__________ N.V. Plotnikova

“___”___________ 2021

ACCEPTED FOR THE DEFENSE

Head of the department,

PhD, Associate Professor

__________ G.I. Radchenko

“___”___________ 2021

DEVELOPMENT OF A SPEECH RECOGNITION LIBRARY FOR
ULTRA-LOW POWER EMBEDDED DEVICES

GRADUATE QUALIFICATION WORK
SUSU – 09.04.01.2021.308-643.GQW

 Supervisor,

PhD, Associate Professor
__________D.V. Topolsky

Author,
student of the group: KE228
__________F.K. Chemorion

Normative control
_____________ S.V. Syaskov
“___”___________ 2021 г.

Chelyabinsk–2021

1

MINISTRY OF SCIENCE AND HIGHER EDUCATION OF THE RUSSIAN FEDERATION

Federal State Autonomous Educational Institution of High Education
“South Ural State University (National Research University)”

School of Electrical Engineering and Computer Science
Department of Computer Science

APPROVED
Head of the department,
PhD, Associate Professor
 G.I. Radchenko
“ ” 2021

TASK
of the master graduate qualification work
for the student of the group KE-228

Francis Kiptengwer Chemorion
in master direction 09.04.01

“Fundamental Informatics and Information Technologies” (master program
“Internet of Things”)
1. The topic (approved by the order of the rector from 25.05.2021)
Development of a Speech Recognition Library for Ultra-Low Power
Embedded Devices.
2. The deadline for the completion of the work: 05.06.2021.
3. The source data for the work: Speech commands dataset. [Electronic

Resource] URL: https://arxiv.org/abs/1804.03209
4. The list of the development issues
4.1. To develop a Library that allows real-time classification of raw audio.
4.2. To develop a library that runs on devices that consume low power and
have low processing capabilities.
4.3. To test the library and give an example of how to implement interfaces.
4.4. To deploy the library in a version control environment.
4.5. To deploy the library in at least one official Library managers for MCU
hardware vendors.
5. Issuance date of the task: 08.02.2021.

Supervisor

PhD, Associate Professor
D. V. Topolsky

The task is taken to perform

Student
F. K Chemorion

https://arxiv.org/abs/1804.03209

2

Student: Francis Kiptengwer Chemorion

Supervisor: Dmitry Valerianovich Topolsky

Topic: Development of a Speech Recognition Library for Ultra-Low Power
Embedded Devices

The calendar plan
of the execution of master graduate qualifying work (GQW)

No Phase Duration Deadline Report Actual date
of execution

Supervisor’s
signature

1. Introduction and
literature review

1 month February,
25th

1. Task of the master graduate
qualification work
2. Text of Introduction
3. References

February 25th

2. Development of
the model,
design of the
system

1 month March,
15th

 1. Text of chapter 1 (theoretical
part).

March 15th

3. Implementation
of a system

1 month April, 15th 1. Software system
2. Text of chapter 2
(implementation part).

April 15th

4. Testing and
debugging of
the system,
experiments

2 weeks May, 1st 1. Set of tests
2. Text of chapter 3 (experimental
part).

May 1st

5. Full text 2 weeks May, 15th 1. Full text of GQW May 15th

6. Validation of
the text by
supervisor

1 week May, 22nd 1. Electronic version of the GQW
text checked by the supervisor

May 22nd

7. Normative
control

3 days May, 25th 1. Twisted text of GQW signed by
student, supervisor and normative
controller

May 25th

8. Proposal
defense

1 week May, 25th
– June, 1st

1. Twisted text of GQW signed by
student, supervisor and normative
controller for the signature of the
Head of the Department Head
about accepting for the defense
2. A signed review of the
supervisor
3. A review of the reviewer, signed
and notarized at his place of work
4. Implementation act (if exists)
5. Presentation of the report in
PowerPoint

June 17th

3

Table of Contents

Introduction ... 6

Structure of the Thesis .. 8

Subject Area Analysis ... 8

1.1 Overview of analogues ... 9

1.1.1. Kaldi NL ... 9

1.1.2. Speechmatics ... 10

1.1.3. Google Speech API ... 11

1.2 Analysis of the main technological solutions 14

1.2.1 Speech Commands Dataset .. 14

1.2.2 TensorFlow .. 14

1.2.3 GitHub .. 15

1.2.4 Google Colaboratory .. 17

1.2.5 Programming Technologies ... 17

1.3 Conclusion .. 18

2 Definition of Requirements .. 19

2. 1 Functional Requirements ... 19

2.1.1 Speech Recognition ... 19

2.1.2 Continuous Recognition Style ... 19

2.1.3 Internet independence .. 19

2.1.4 Noise .. 19

2.1.5 Processor power ... 19

2.2 Core Requirements .. 19

2.3 Speech Requirements .. 20

4

2.4 Documentation Requirements ... 20

2.5 Conclusion .. 21

3 Design and Implementation ... 22

3.1 Architecture of the Proposed Solution .. 22

3.2 Description of Data ... 23

3.2.1 Data Collection .. 23

3.2.2 Data Usage ... 23

3.2.3 Data Storage ... 23

3.2.4 Data Retention ... 24

3.3 Algorithms for solving the problem .. 25

3.4 Conclusion .. 28

4 Deployment and Testing .. 29

4.1 Deployment ... 29

4.2 Implementation of interfaces .. 30

4.2.1 Arduino Example sketch compiling and running 30

4.3 Testing the Machine Learning model ... 34

4.4 Testing the library using Arduino Lint ... 35

4.5 Conclusion .. 36

5 Conclusion ... 37

5.1 Optimizing Latency .. 38

5.2 Optimizing Power Usage .. 38

5.3 Optimizing Model and Binary Size .. 38

References ... Ошибка! Закладка не определена.

5

Acknowledgements

I would like to acknowledge the role that God has played in my progress. For giving
me this opportunity to further my studies a long way from home. I would also like
to thank my family for always being there for me this whole time.

My supervisor Dmitry Topolsky has been very instrumental and resourceful, my
department has always been open and available to solving all my educational and
non-educational problems. My university has given me a conducive learning
environment that I cannot take for granted.

Lastly, I would lastly like to thank the Russian Government for diplomatically
facilitating my stay in Russia.

6

Introduction

Speech recognition, also known as automated speech recognition, machine

speech recognition, or speech-to-text, is a feature that allows a program to convert

human speech into written text. Although voice recognition and speech recognition

are often mixed, speech recognition focuses on the conversion of speech from a

spoken format to a text format, whereas voice recognition only attempts to recognize

a particular user's voice [1].

As embedded device computing becomes more prevalent, it presents new and

creative ways for humans and machines to cooperate, connect, and interact. Though

data has received most of the attention in embedded systems, the incorporation of

speech into embedded computer applications provides a flexible means of providing

human interaction, connectivity, and control. Voice, when implemented properly

and with respect for relevance, prices, and human factors, may offer a more versatile

user interface at a lower cost than conventional approaches such as touch screens or

data entry [2].

There are several advantages to speech-machine interaction:

• Speech as a form of communication, is more intuitive and simpler. Speech

recognition is particularly useful when the human's hands or eyes are

otherwise occupied. For example, it may very be convenient to use verbal

commands when driving or when multitasking.

• Speech telephony is a reliable method of bi-directional speech communication

with devices that can listen and respond without the use of complicated

commands.

• Speech integration can reduce or eliminate the need for a touch screen on

many devices, lowering the cost of the device especially when interacting with

apps that are not commonly used and do not need a touchscreen.

7

• For people with disabilities that limit them from entering data manually,

speech enablement is a vital method of interacting with various devices.

Speech communication with computers enables the remote control of various

functions that would otherwise be manual [3].

Several firms have also made available various speech recognition algorithms,

databases, and templates. These services enable developers to add products like a

digital personal assistant or even speech-controlled home automation systems. These

products are common because they simplify and automate activities that can be time-

consuming and repetitive. Consider an apartment where every part of the house is

linked to a smart assistant device. It will be as easy as instructing the device to

activate night mode, switch off all lights, lock all doors and windows, and activate

the security alarm.

The purpose of the research:

To create a software complex to enable running of machine learning

algorithms for speech recognition on small devices with limited power and

computing capabilities Tasks necessary to achieve the goal:

• Analyzing the market for existing libraries.

• Collect a keyword dataset to use to train a machine learning model for speech

recognition.

• Design a model architecture for MBEDSpeech.

• Training the MBEDSpeech Model

• Testing and deploying the model to different embedded device Platforms in

a way that can be used by other developers.

• Integrating MCU code with deployed library as an interfacing example

• Testing the integrated model

8

Structure of the Thesis

This thesis consists of five main chapters: Introduction, definition of

requirements, design and Implementation, deployment and testing, conclusion, and

references.

In the first chapter, we will have the subject area analysis briefly then have an

overview of analogues and the main technological solutions that I will use will be

featured. All the different software platforms to be used will be adequately

described.

In the second chapter, there is a description of both functional and non-

functional requirements as well as a description of how the various software

components will interact with each other. We then finish by describing how

documentation will be done for the device.

In the third chapter we describe the design and implementation of the software

and how the different components will interact with each other as well as the

algorithms for tackling the problem and a description of the data.

In the fourth chapter we will do deployment and testing for both the software

accuracy and the hardware performance and interfacing with a real MCU. For this

practice we will use an Arduino MCU.

Finally in the fifth chapter we will have a conclusion for the thesis, with future

improvements to the solution being discussed as well as opportunities.

Subject Area Analysis

An ultra-low-power embedded device is one that is inexpensive, runs on a

few hundred kilobytes of RAM, has similar amounts of flash memory for persistent

program and data storage, has a clock speed of just tens of megahertz, does not run

a full operating system, and avoids using dynamic memory allocation functions like

new or malloc() because they’re designed to be reliable and long-running, and it’s

extremely difficult to ensure that if you have a heap that can be fragmented [4].

9

To take advantage of ultra-low-power embedded devices’ low power

consumption, it is imperative that we merge the embedded software development

with machine learning since data is the most important by-product of any system.

One of the most anticipated problems that this combination of disciplines can solve

through predicting things based on past observations is speech recognition [4].

To do speech recognition using deep learning, a programmer should feed

data into learning algorithm that discovers the rules in the data, which then builds a

model based on the data provided through a process called training and finally data

is then run through this model to make predictions, a process called inference [4].

The past few years has seen products provide a voice user interface (UI)

designed to give instant access to information without the need for a screen or

keyboard. All these applications use speech recognition libraries in their

development as will be discussed below. In most cases, speech recognition is done

in the cloud, on powerful servers running large ML models bringing up privacy

issues, efficiency, and speed due to latency and high-power consumptions sending a

constant stream of data consumes a lot of energy [4].

This thesis will therefore focus on training a tiny model that listens for a wake

words specified in the Speech Commands dataset and run it on a low-powered chip

and does offline inference as well as give access to other embedded software

developers to use it in various applications.

1.1 Overview of analogues

1.1.1. Kaldi NL

Kaldi is a speech recognition toolkit written in C++ intended for use by

researchers whose main goal is to have modern and flexible code, written in C++,

that is easy to modify and extend. Important features include:

• It can be used at code-level for integration as a library.

• It has extensive support for linear algebra.

10

• Kaldi provides algorithms in a way that can easily be extended in the most

generic form possible.

• Code for Kaldi is provided using an unrestrictive license: Apache 2.0

permitting and encouraging modifications and re-release.

• Kaldi's documentation is complete and highly accessible to everyone [5].

1.1.2. Speechmatics

Speechmatics is speech to text recognition software powered by machine

learning with high accuracy. The software is available on both cloud and on-premise

for users; it can also be embedded in devices. It uses a custom language build

substructure i.e., automatic linguist, which lets the software learn new languages at

a high pace [6].

Speechmatics boasts a high accuracy level that is further boosted by the

custom dictionary feature. You can add new words to a language quickly.

Speechmatic takes a new approach to recognize the English language, and it

provides accurate speech recognition despite the user’s accent. Features of

Speechmatics include:

• It gives a very accurate speech to text conversion.

• It constantly delivers a low word error rate across all the languages it is

supporting. Speechmatic provides frequent testing of the languages they are

offering to keep a check on word error rate.

• It is an industry major in language coverage. Speechmatic is getting updated

with new vocabulary to meet business-relevant needs.

• It can be installed with cloud services to avail its speech-to-text technology

in real-time or, one can avail a pre-recorded (batch) files for on-premise

installation. Speechmatics provides adjustable deployment.

• It allows its users to add context-specific words to its dictionary. It enhances

your transcription accuracy. This feature enables you to define the context

11

of a conversation in advance. You can input variables like name, accents,

abbreviations, acronyms, special, or industry-specific language, et cetera.

• It gives advanced punctuation, that is built over 2.5 billion words and holds

an industry-leading set of supported punctuation marks. This optimizes the

pace and ease of reading a transcript for human users.

• The software identifies a change of speaker within the user’s transcript. It

adds a token automatically when the change in the speaker is noticed. This

helps in easing the transcript modification for readability [7].

1.1.3. Google Speech API

Google Cloud Speech API is a programmatic interface to Google Cloud

Platform services that allows a user to send speech recognition requests to Speech-

to-Text in any programming language using the Google Cloud Client Libraries. It

is a key part of Google Cloud Platform, allowing you to easily add the power of

speech to everything from computing to networking to storage to machine-learning-

based data analysis to your applications [8].

Speech-to-Text can process up to 1 minute of speech audio data sent in a

synchronous request. After Speech-to-Text processes and recognizes all of the

audio, it returns a response. A synchronous request is blocking, meaning that

Speech-to-Text must return a response before processing the next request.

Speech-to-Text has three main methods to perform speech recognition.

These are listed below:

• Synchronous Recognition which sends audio data to the Speech-to-Text

API, performs recognition on that data, and returns results after all audio has

been processed.

• Asynchronous Recognition which sends audio data to the Speech-to-Text

API and initiates a Long Running Operation which can periodically be

polled for recognition results.

12

• Streaming Recognition which performs recognition on audio data provided

within a gRPC bi-directional stream. Streaming requests are designed for

real-time recognition purposes, such as capturing live audio from a

microphone. Streaming recognition provides interim results while audio is

being captured, allowing result to appear, for example, while a user is still

speaking [9].

After comparing the different transcribers Google Cloud Speech-to-Text,

Speechmatics and Kaldi on Word Error Rate and hourly cost to see how they

compare to each other, I found out what are their weaknesses are and it helped me

to build up on my proposed solution.

First, when on comparing Google Cloud Speech-to-Text and Speechmatics,

both these services are quite similar in their offering: cloud-based speech-to-text for

many different languages with high performance. Both Google and Speechmatics

continually update their language models to increase accuracy and introduce new

words where applicable. This continuous development is a strong point for both,

especially the introduction of new words which can help with new company names

and other terms. Both services have a cost per minute of audio transcribed: Google

uses a fixed price, the price for Speechmatics goes down as more minutes are

purchased up front. Google has a few different transcription models available more

than Speechmatics, however [21].

On the other hand, Kaldi which is an opensource speech recognition toolkit

developed and maintained mainly by Daniel Povey with the help of about 70 other

contributors so far has a lot of flexibility, especially since it’s open source and can

be extended or improved by anyone who dares understand it. It does carry a lot of

complexity however, requiring a lot of time and effort to fully learn the quirks.

Using Word Error Rate, which compares a reference with a hypothesis and is

given by (Substitutions + Insertions + Deletions) / Number of words, where a

substitution is when a word is replaced, an insertion is when a word is added that

13

wasn’t said and a deletion is a word that is omitted, Google Speech-to-text scored

4.9% [10], Speechmatics 14.7% [11] and Kaldi 8.01% [12].

 I also compared them in terms of the cost of running for instance on an

Amazon EC2 instance by dividing costs of the EC2 instance by the amount of audio

it can transcribe per hour, for a c5.2xlarge instance it costs $0.384 per hour. There

is an additional monthly fee for storage usage as well, however this does not

significantly increase hourly costs.

With the Amazon instance running I also did some testing to determine how

much audio could be transcribed per hour and determined that we could transcribe

at a rate of 5 to 10% of the duration of the audio. I determined that it cost about

$0.038 per hour of transcribed audio for Kaldi NL but $ 2.4 for Speechmatics and $

1.4 for the Google Speech API. However, this does not include the cost of setup and

maintenance!

Feature Kaldi NL Speechmatics Google Speech

API

Language support 60 Languages 21 languages 80 languages

Cost / min $ 0.038 $ 2.4 $ 1.4

Speaker detection English (8Khz) No No

Audio Formats FLAC, Siren,

WAV, OGG,

NULAW, Siren

SR

FLAC, PCM,

WAV, OGG,

NULAW

FLAC, Linear16,

MULAW, ARM,

AMR_W8

Noise Friendly Yes No Yes

Word Hints Yes No No

Internet

dependency

Yes Yes Yes

Table 1 Comparison of analogues

14

1.2 Analysis of the main technological solutions

1.2.1 Speech Commands Dataset

The Speech Commands Dataset was created by the TensorFlow and AIY

teams to showcase the speech recognition example using the TensorFlow API. The

dataset has 65,000 clips of one-second-long duration. Each clip contains one of the

30 different words spoken by thousands of different subjects [13]. This dataset will

be combined with the Microsoft scalable Noisy Speech Dataset, which has a

collection a variety of environmental noise files in .wav format sampled at 16khz.

For the unknown category, I will use audio files with a collection of other words that

are not considered in the dataset classes.

It has limited vocabulary but is still have enough variety for models trained

on the data to potentially be useful for some applications. The dataset’s top ten

common words as the core of our vocabulary that would be useful as commands in

embedded systems or robotics applications; "Yes", "No", "Up", "Down", "Left",

"Right", "On", "Off", "Stop", and "Go" [14]. I will be focusing my thesis on these.

In the second version of the dataset, there are four more command words;

“Backward”, “Forward”, “Follow”, and “Learn”. One of the most challenging

problems for keyword recognition is ignoring speech that does not contain triggers,

so I also needed a set of words that could act as tests of that ability in the dataset.

Some of these, such as “Tree”, were picked because they sound like target words

and would be good tests of a model’s discernment. Others were chosen arbitrarily as

short words that covered a lot of different phonemes. The final list was "Bed",

"Bird", "Cat", "Dog", "Happy", "House", "Marvin", "Sheila", "Tree", and "Wow”.

These extra words will be added in a future release of the library.

1.2.2 TensorFlow

TensorFlow is an open-source end-to-end platform for creating Machine

Learning applications. It is a symbolic math library that uses dataflow and

differentiable programming to perform various tasks focused on training and

15

inference of deep neural networks. It allows developers to create machine learning

applications using various tools, libraries, and community resources [15].

TensorFlow is the best library of all because it is built to be accessible for

everyone. TensorFlow library incorporates different API to build at scale deep

learning architecture like CNN or RNN. TensorFlow is based on graph computation;

it allows the developer to visualize the construction of the neural network with

Tensor board. This tool is helpful to debug the program. Finally, TensorFlow is built

to be deployed at scale. It runs on CPU and GPU. To give a concrete example,

Google users can experience a faster and more refined the search with AI. If the user

types a keyword to the search bar, Google provides a recommendation about what

could be the next word [16].

Some supported TensorFlow algorithms include:

• Linear regression

• Classification

• Deep learning classification

• Deep learning wipe and deep

• Booster tree regression

• Boosted tree classification [17].

1.2.3 GitHub

GitHub provides combines the distributed version control and source code

management features of Git with access control, issue tracking, feature requests, task

management, continuous integration, and wikis for every project [18]. These

services are free of charge for individuals; however, the more complex professional

and corporate services are commercial. It provides limitless private repositories to

all plans, including free accounts, but only allows up to three contributors per

repository. The following are some of the benefits of utilizing git:

16

• Git performs very strongly and reliably when compared to other version

control systems. New code changes can be easily committed, version branches

can be effortlessly compared and merged, and code can also be optimized to

perform better. Algorithms used in developing Git take the full advantage of

the deep knowledge stored within, with regards to the attributes used to create

real source code file trees, how files are modified over time and what kind of

file access patterns are used to recall code files as and when needed by

developers.

• Git is designed specially to maintain the integrity of source code. File contents

as well as the relationship between file and directories, tags, commits,

versions etc. are secured cryptographically using an algorithm called SHA1

which protects the code and change history against accidental as well as

malicious damage. You can be sure to have an authentic content history for

your source code with Git.

• Git offers support several kinds of nonlinear development workflows and its

efficiency in handling both small scale and large scale projects as well as

protocols. It is uniquely designed to support tagging and branching operations

and store each and every activity carried out by the user as an integral part of

“change” history. Not all VCSs support this feature.

• Git offers the type of performance, functionality, security, and flexibility that

most developers and teams need to develop their projects. When compared to

other VCS Git is the most widely accepted system owing to its universally

accepted usability and performance standards.

• Git is a widely supported open-source project with over ten years of

operational history. People maintaining the project are very well matured and

17

possess a long-term vision to meet the long-term needs of users by releasing

staged upgrades at regular intervals of time to improve functionality as well

as usability. Quality of open-source software made available on Git is heavily

scrutinized a countless number of times and businesses today depend heavily

on Git code quality [19].

1.2.4 Google Colaboratory

 Colaboratory, is a product from Google Research that allows anybody to write

and execute arbitrary python code through the browser and is well suited to machine

learning and data science. Colab is a hosted Jupyter notebook service that requires

no setup to use, while providing free access to computing resources including GPUs

[20].

I will be using Colab to:

• Write and execute code in Python

• Create/Upload/Share notebooks

• Import/Save notebooks from/to Google Drive

• Import/Publish notebooks from and to GitHub

• Import external datasets e.g. from Kaggle

• Integrate PyTorch, TensorFlow, Keras, OpenCV

• Utilize free Cloud service with free GPU

1.2.5 Programming Technologies

For this project we will use Python, C and C++ as our main programming

languages for development. Development that tools are required to develop and

test/debug the code include:

- Compiler.

- Debugger.

18

1.3 Conclusion

The following components are being used for this project. It is urgent and

under development right now:

1. Google Speech Dataset

2. TensorFlow

3. Keras

4. GitHub

5. Google Colab

19

2 Definition of Requirements

2. 1 Functional Requirements

2.1.1 Speech Recognition

The MBEDSpeech recognition library allows 1 second word length of a 10

word vocabulary. It stores the "trained" word patterns used for recognition in internal

memory. The main board has a charging port that can be hooked up to a battery to

power the static ram when the main circuit is turned off. This keeps all the trained

words safely stored in memory (SRAM) so the circuit does not have to be retrained

every time it is turned on.

2.1.2 Continuous Recognition Style

It is the natural conversational speech people are accustomed to in everyday

life. It is extremely difficult for a recognizer to shift through the text as the words

tend to merge together. Isolated speech recognition system is another feature, of the

IC that is used by MBEDSpeech.

2.1.3 Internet independence

 The machine learning model used by MBEDSpeech should run on the MCU

offline.

2.1.4 Noise

 MBEDSpeech should be able to work well in noisy environments by

automatically recognizing and filtering out the noise.

2.1.5 Processor power

 MBEDSpeech should run on an edge device with a 32-bit ARM Cortex-M4F

microprocessor running at 64MHz with 1MB of program memory and 256KB RAM

2.2 Core Requirements

2.2.1. MBEDSpeech shall be able to classify audio in Realtime.

2.2.2 MBEDSpeech shall be compatible with edge Devices from Arduino, STM

Electronics and NVDIA

20

2.2.3 MBEDSpeech shall be easy to use by developers through bootstrapping of all

the required code and shall have comments

2.2.4 MBEDSpeech prototype used for this thesis will be limited to 4 words to assess

how effective the approach taken is, then be updated, through GitHub to include all

the words in the Google Speech Commands Dataset for completeness

2.2.5 MBEDSpeech shall provide binary files for testing on the devices targeted

2.3 Speech Requirements

The following guidelines are specific to speech:

2.3.1 MBEDSpeech SHALL use only approved keywords words found in the

Google Speech Commands Dataset.

2.3.2 MBEDSpeech SHALL provide serial output to indicate when the Microphone

Off.

2.3.3 MBEDSpeech shall recognize words in English only for the scope of this thesis

2.3.4 The audio used for MBEDSpeech training shall be 16KHz

2.4 Documentation Requirements

Documentation of this library will be delivered in various formats including

pdf, ppt, html and docx and will be English language. This documentation will be

the user manual for “MBEDSpeech” outlining its various features and how to use

the Library for microcontroller development. It will contain all the options for

deploying the service on various MCUs.

Error codes will also be explained and several solutions or how to avoid or

solve them will also be outlined.

21

2.5 Conclusion

In this chapter, we defined the various core and speech requirements for

MBEDSpeech. We also described how the various software components within it

will interact with each other. Lastly, we gave the documentation requirements that

described among other things the user manual and its contents.

22

3 Design and Implementation

3.1 Architecture of the Proposed Solution

The MBEDSpeech Library is composed of various components, as shown in

the image below. First, the microphone receives audio input then using MFCC (Mel

frequency cepstral coefficients) extracts features and at the same time reducing the

magnitude of the speech signal devoid of causing any damage to the power of speech

signa. The inference is then run on the features outputting class probabilities as

shown in the diagram below.

Figure 1 MBEDSpeech Architecture

23

 The model used in this thesis is trained to recognize the words "Yes", "No",

"Up", "Down", "Left", "Right", "On", "Off", "Stop", "Go", noise and unknown

speech, but the list will be updated after a first successful deployment. The model

takes in one second worth of data at a time and outputs the probability scores. This

data is consumed by the model in terms of spectrograms which are two-dimensional

arrays that are made up of slices of frequency information, each taken from a

different time window.

3.2 Description of Data

3.2.1 Data Collection

 Audio is continuously sampled at 16 KHz using a microphone. The data is

then temporarily stored in the device before being passed to the MFCC which

converts raw audio data into spectrograms that will be run through the inference.

Users’ exposure to malicious actions by other users by discarding the data

completely.

3.2.2 Data Usage

 After the raw data is run through inference, probabilities for the various

classes of data is then calculated and displayed on the serial monitor for every second

of data. At this point a command recognizer could be programmed to undertake a

certain command which the command responder will execute.

3.2.3 Data Storage

Different metadata is generated and stored by the MBEDSpeech system for

the purposes of device diagnostics and service improvements. Audio inputs being

the core piece of MBEDSpeech data, is however not sored because of the size of

devices that MBEDSpeech is targeting. Speech is processed through the neural

24

network and then to extract the user's intent. These system uses machine learning

techniques to continuously improve itself with each input.

3.2.4 Data Retention

Data is not in any way stored through the MBEDSpeech Library, but if the

developer of the device decides to store data, they are free to do so. As for the

metadata, access is granted via specific, audited permissions and access to customer

data requires review and approval by the responsible managers. Additionally, the

permissions to access this metadata are reviewed and positively confirmed by

management at least quarterly and access is audited.

Some system level data is also stored in log files, for either service

troubleshooting purposes, or security incident resolution. Troubleshooting logs

contain information necessary for developers to troubleshoot the MBEDSpeech

Library, but do not contain customer speech recordings or data derived from

customer speech recordings. Access to these logs is restricted to teams needing

access to this data to perform their business functions. Troubleshooting logs are

encrypted and their access is audited.

We apply retention policies to data to minimize the (meta)data we retain. Data

is retained when it serves a business purpose (including providing the service to

customers and improving our systems) or as necessary to comply with law. We also

offer debug interfaces like SWD and we also have disabled code readout on Arm

platforms. Even though these measures are not perfect, they will raise the cost of an

attack

The speech recognition and natural language understanding in the

MBEDSpeech system are based on machine learning (ML) algorithms. Data sets

from real use cases are fed into the various ML systems to build new algorithms and

improve existing algorithms.

25

3.3 Algorithms for solving the problem

3.3.1 Audio as data

The first step to do speech recognition for our dataset will be to extract

features. This is the identifying of components of the audio signal that are good for

identifying the content while eliminating background noise. Mel Frequency Cepstral

Coefficients (MFCCs), Introduced by Davis and Mermelstein are widely used for

automatic speech recognition [21].

First the signal needs to be framed into short frames, then for each frame we

need to calculate the periodogram estimate of the power spectrum. After this we

apply the mel filterbank to the power spectra and summing the energy in each filter.

The fourth step will be to take the logarithm of all filterbank energies, then taking

the DCT of the log filterbank energies before finally keeping the DCT coefficients

2 – 13 and discarding the rest of them [22].

The MFCC process transforms audio into a table of data where each row

represents a range of frequencies and each column represents a span of time. The

value contained in each cell represents the amplitude of its associated range of

frequencies during that span of time. The spectrogram shows each cell as a colored

block, the intensity of which varies by amplitude [23]. Examples of the spectrograms

on some of the keywords are as shown below:

Figure 2 Spectrogram of unknown speech

26

Figure 3 Spectrogram of background noise

Figure 4 Spectrogram of "stop"

Figure 5 Spectrogram of "right"

3.3.2 Convolutional neural networks

Convolutional neural networks (CNN) are Deep Learning algorithms that take

image inputs then assign weights and biases to various parts of the image to be able

27

to differentiate it from another image. For the Convolutional Neural Network in this

thesis, we will use the spectrograms of the different words we are trying to recognize

as input. It will then reduce the images into a form that is easier to process without

losing features critical for good prediction [24].

3.3.2.1 Convolution Layer

 The convolution operation extracts high level features from the input image.

Convolutional neural networks can have multiple convolution layers with the first

being responsible for capturing low-level features and adapting to high-level with

added layers, giving a network with a wholesome understanding of images in the

dataset [25].

Figure 6 Convolutional Operation

3.3.2.2 Pooling Layer

 By reducing the spatial size of the convolved feature, the pooling layer

decreases the computational power required to process the data through

28

dimensionality reduction. The Convolutional layer and the pooling layer together

form the i-th layer of a convolutional neural network, with the number of such layers

dependent on the image complexity. This process enables the model to understand

the features [26].

3.3.2.3 Classification

 This phase flattens the image into a column vector then fed to a feed-forward

neural network and back propagation applied to every iteration of training since the

input image has already been converted into a suitable form for our multi-level

perceptron. Over a series of epochs, the model is able to distinguish between

dominating and certain low-level features in images and classifies them using the

Softmax classification technique [27].

3.4 Conclusion

The model trained in this chapter will then be converted into a TensorFlow

Lite model which can now run on microcontrollers. This TensorFlow Lite model

will be the main inferencing component of the EMBEDSpeech Library interface for

different vendors, the focus in this thesis being Arduino. This Library will deliver a

seamless and efficient keyword spotting service for the Google Speech Command

Dataset on MCUs. The user will be able to use this library to perform machine

learning on their Low Power MCU for real-time speech recognition.

29

4 Deployment and Testing

4.1 Deployment

The MBEDSpeech library has been added to the official Arduino Library

Manager as shown in the list below of all the repos that are included in the Library

Manager.

Figure 7 EMBEDSpeech entry in the Arduino Library Index

Figure 8 EMBEDSpeech Arduino Library description on
arduinolibraries.info

30

4.2 Implementation of interfaces

4.2.1 Arduino Example sketch compiling and running

To add the Library to Arduino IDE, the user has 2 options.

The first option is by using the Arduino Library Manager. This can be found in the

Tools > Manage Libraries menu or using the shortcut ctrl + shift + I

in the resulting window, search for “MBEDSpeech”, then click on install when the

Library is found as shown below:

Figure 9 EMBEDSpeech Library in Arduino Library Manager

Alternatively, the user can go to the MBEDSpeech git repository at the link:

31

https://github.com/kchemorion/MBEDSpeech and download the zip either from the

latest development branch or from the certified releases:

Figure 10 EMBEDSpeech Github

Or

Figure 11EMBEDSpeech Github Release

Then add the zip file manually through the sketch menu:

https://github.com/kchemorion/MBEDSpeech

32

Figure 12 EMBEDSpeech Library Manual Addition

Figure 13 EMBEDSpeech Library Externally added

33

Open examples to see a default example that can be modified for the developer’s

use:

Figure 14 EMBEDSpeech Arduino example

The Arduino example sketch compiles successfully:

Figure 15 EMBEDSpeech Compilation success

34

And runs successfully giving correct predictions when words are said through the

microphone:

Figure 16 EMBEDSpeech Inference running

4.3 Testing the Machine Learning model

 For testing the neural network, 20% of the data used for training and 80%

sample data that the CNN had not interacted with was used to evaluate how the

model is performing. Accuracy of the model was measured as the percentage of

windows of audio that were correctly classified

A Confusion matrix is a table showing the balance of correctly versus

incorrectly classified windows. This is by comparing the values in each row, the On-

device performance region shows statistics about how the model is likely to run on-

device, inferencing time is an estimate of how long the model will take to analyze

one second of data on a typical microcontroller, peak is how much RAM will be

required to run the model on-device.

 For EMBEDSpeech, the following were the results of testing the model: The

accuracy is 87.6%, an inferencing time of 4ms, peak ram usage of 4.3k and ROM

usage of 47.3k. The confusion matrix is as shown below:

35

 DOWN GO LEFT NO NOISE OFF ON RIGHT STOP UNKNOWN UP YES
DOWN 73.30% 13.10% 0.30% 2.10% 3.60% 0.60% 0.90% 0% 1.50% 1.20% 1.80% 1.80%

GO 8.40% 74.00% 0.60% 0.60% 4.30% 3.10% 1.20% 0.30% 1.90% 0.90% 3.40% 1.20%
LEFT 0.60% 0.60% 79.60% 0.30% 5.20% 1.20% 0% 4.30% 0.60% 0.30% 0.60% 6.70%

NO 4.00% 18.00% 2.10% 67.00% 3.10% 0.60% 0.90% 0.60% 0% 0.60% 1.80% 1.20%
NOISE 0% 0% 0.20% 0% 96.60% 0% 0.20% 1.00% 0.20% 0.20% 0.70% 0.70%

OFF 0% 0.90% 0.30% 0% 4.90% 78.70% 0.90% 0% 0.90% 0% 13.00% 0.30%
ON 0.90% 0% 0.30% 0% 5.10% 5.70% 84.10% 0.90% 0% 0.60% 2.40% 0%

RIGHT 0% 0% 2.50% 0% 3.90% 0.60% 1.10% 91.70% 0% 0% 0.30% 0%
STOP 0.30% 3.40% 0% 0% 15.80% 2.10% 0% 0% 68.50% 0.30% 9.60% 0%

UNKNOWN 2.00% 10.70% 6.10% 3.10% 11.20% 4.10% 18.90% 14.80% 4.10% 18.90% 4.10% 2.00%
UP 0.30% 2.10% 0.60% 0% 14.10% 6.50% 0.90% 0% 0.30% 0.30% 75.10% 0%

YES 0% 0.30% 4.70% 0.30% 4.00% 0% 0% 0.30% 0% 0.30% 0% 90.10%
F1 SCORE 0.78 0.67 0.82 0.78 0.77 0.78 0.83 0.89 0.77 0.3 0.72 0.88

Figure 17EMBEDSpeech Confusion Matrix

4.4 Testing the library using Arduino Lint

The Arduino team created a tool to check Arduino projects for common

problems. Arduino Lint runs over 175 checks on your sketches, libraries, and boards

platforms which cover specification compliance, Library Manager submission

requirements, and best practices.

When I run Arduino Lint on my Library, all checks are passed as seen in the outputs

below:

Figure 18 Arduino Lint Test Results

36

Figure 19 Arduino Lint test results json

4.5 Conclusion

In this chapter we have looked at the deployment of EMBEDSpeech to the
Arduino library manager and have also conducted testing for the machine learning
model which returned an accuracy of 86% and tested the Arduino library using
Arduino lint. The library is now ready for use by other developers.

37

5 Conclusion

This project undertakes a viable solution for the need of machine learning at

the very basic level, that is, in low powered embedded devices. The project will

enable us to bring device with a microcontroller under the control of our voice

without having connect to any speech recognition cloud services. It basically uses

the commands in the speech command dataset, which is carefully chosen and ideal

for robotic applications.

The tasks solved in this thesis include

a) Development of a Library that allows real-time classification of raw audio

that can run in Arduino microcontrollers. This is by developing a machine

learning model that can identify different words in the Speech commands

dataset.

b) Development of a library that runs on devices that consume low power and

have low processing capabilities by converting the machine learning model

into a TensorFlow Lite model that can run in very small devices.

c) Testing of the library has been done using Arduino Lint and an example of

how to implement interfaces is added into the Library and can be accessed

using the Arduino IDE.

d) Deployment of the library in a version control environment (GitHub) has been

done. The link to the repository is:

https://github.com/kchemorion/MBEDSpeech.git .

e) This Library has been deployed into the Arduino library manager for all MCU

architectures. Link to information about the Library is :

https://www.arduinolibraries.info/libraries/mbed-speech .

Due to the successful running of the initial library release, the next steps will

be to add the rest of the keywords present in the speech dataset with the 1.0.2 release.

https://github.com/kchemorion/MBEDSpeech.git
https://www.arduinolibraries.info/libraries/mbed-speech

38

Optimizations as well will be done to tune the performance of the library as shown

below:

5.1 Optimizing Latency

 Designing model architectures is difficult and time-consuming, but there have

recently been some advances in automating the process, such as MnasNet, using

approaches like genetic algorithms to improve network designs. These are still not

at the point of entirely replacing humans.

I am therefore looking forward to using ready services like AutoML that allow

users to avoid many of the gritty details of training, be able to design the best possible

model for your data and efficiency trade-offs solving latency issues.

5.2 Optimizing Power Usage

 For this I will try to estimate how much power the model uses on different

devices by measuring the latency for running one inference, and then multiplying

the average power usage of the system for that period to get the energy usage. After

knowing how many arithmetic operations a model requires, and roughly how many

operations per second a processor can perform, I can roughly estimate the time that

model will take to execute. I intend to get these device power usage numbers at a

particular frequency and voltage from datasheets.

5.3 Optimizing Model and Binary Size

Currently during training, weights are usually stored as floating-point values,

taking up 4-bytes each in memory. Because space is such a constraint for embedded

devices, I will use the compression utility in TensorFlow Lite to reduce those values

down to a single byte in a process called quantization. It works by keeping track of

the minimum and maximum values stored in a float array, and then converting all

the values linearly to the closest of 256 values equally spaced within that range.

These codes are each stored in a byte, and arithmetic operations can be performed

on them with a minimal loss of accuracy.

39

References

1. «Speech Recognition,» IBM, 2 9 2020. [В Интернете]. Available:

https://www.ibm.com/cloud/learn/speech-recognition.

2. H. S. X. L. P. W. Wenhong Lv, «Application of speech recognition

technology».

3. A. Brown, «The Role of Voice in IoT Applications,» London, 2015.

4. D. S. Pete Warden, «TinyML,» California, Published by O’Reilly

Media, Inc., 2020.

5. «About the Kaldi project,» [В Интернете]. Available: http://kaldi-

asr.org/doc/about.html.

6. «Speechmatics API,» [В Интернете]. Available:

https://app.speechmatics.com/api-details.

7. «Speechmatics Software Overview,» [В Интернете]. Available:

https://www.techjockey.com/detail/speechmatics#:~:text=What%20is

%20Speechmatics%3F,also%20be%20embedded%20in%20devices..

8. «Speech-to-Text,» [В Интернете]. Available:

https://cloud.google.com/speech-to-text.

9. «Speech-to-Text basics,» Google, [В Интернете]. Available:

https://cloud.google.com/speech-to-text/docs/basics.

10. H. Chen, «Does Word Error Rate Matter?,» 28 1 2021. [В Интернете].

Available: https://www.smartaction.ai/blog/does-word-error-rate-

matter/#:~:text=Word%20Error%20Rate%20(WER)%20is,word%20

error%20rate%20of%204%25..

11. «What is WER? What Does Word Error Rate Mean?,» 2021. [В

Интернете]. Available: https://www.rev.com/blog/resources/what-is-

wer-what-does-word-error-rate-mean.

40

12. 2021. [В Интернете]. Available:

https://github.com/syhw/wer_are_we.

13. «Google Speech Commands,» [В Интернете]. Available:

https://pyroomacoustics.readthedocs.io/en/pypi-

release/pyroomacoustics.datasets.google_speech_commands.html#:~:

text=Google%20Speech%20Commands-

,Google's%20Speech%20Commands%20Dataset,Creative%20Comm

ons%20BY%204.0%20license.&text=Create%20the%20sound%20o

bj.

14. P. Warden, «Launching the Speech Commands Dataset,» Google, 24

08 2017. [В Интернете]. Available:

https://ai.googleblog.com/2017/08/launching-speech-commands-

dataset.html.

15. «TensorFlow is an end-to-end open source platform for machine

learning,» [В Интернете]. Available:

https://www.tensorflow.org/overview.

16. S. Yegulalp, «What is TensorFlow? The machine learning library

explained,» 18 06 2019. [В Интернете]. Available:

https://www.infoworld.com/article/3278008/what-is-tensorflow-the-

machine-learning-library-

explained.html#:~:text=TensorFlow%20is%20a%20Python%2Dfrien

dly,machine%20learning%20faster%20and%20easier&text=Machine

%20learning%20is%20a%20complex%20discipline.&te.

17. «Custom Federated Algorithms,» Tensorflow, [В Интернете].

Available:

https://www.tensorflow.org/federated/tutorials/custom_federated_alg

orithms_1.

41

18. «Understanding the GitHub flow,» 04 07 2020. [В Интернете].

Available: https://guides.github.com/introduction/flow/.

19. J. Clancy, «The Advantages and Disadvantages of Using GitHub,» 19

11 2020. [В Интернете]. Available:

https://www.codeclouds.com/blog/advantages-disadvantages-using-

github/.

20. «About Colaboratory,» [В Интернете]. Available:

https://colab.research.google.com/notebooks/welcome.ipynb?hl=ru.

21. V. Passricha и R. K. Aggarwal, «Convolutional Neural Networks for

Raw Speech Recognition,» 2018.

22. O. Abdel-Hamid, A.-r. Mohamed, H. Jiang, L. Deng, G. Penn и D. Yu,

«Convolutional Neural Networks,» 2014.

23. J. Le, «The 3 Deep Learning Frameworks For End-to-End Speech

Recognition That Power Your Devices,» 2019.

24. D. Palaz, M. Magimai.-Doss и R. Collobert, «Convolutional Neural

Networks-based continuous speech recognition using raw speech

signal,» 2015.

25. S. K. Gouda, S. Kanetkar, V. Harrison и M. K. Warmuth, «Speech

Recognition: Key Word Spotting through Image,» 2020.

26. N. Dimmita и P. Siddaiah, «Speech Recognition Using Convolutional

Neural Networks,» 2018.

27. O. Abdel-Hamid, A.-r. Mohamed, H. Jiang и G. Penn, «APPLYING

CONVOLUTIONAL NEURAL NETWORKS CONCEPTS TO

HYBRID NN-HMM,» 2019.

28. «Mel Frequency Cepstral Coefficient,» [В Интернете]. Available:

http://practicalcryptography.com/miscellaneous/machine-

learning/guide-mel-frequency-cepstral-coefficients-mfccs/.

42

29. «Implementing production-ready live audio transcription using

Speech-to-Text,» Google, [В Интернете]. Available:

https://cloud.google.com/speech-to-text/docs/tutorials.

	Introduction
	Structure of the Thesis
	Subject Area Analysis
	1.1 Overview of analogues
	1.1.1. Kaldi NL
	1.1.2. Speechmatics
	1.1.3. Google Speech API

	1.2 Analysis of the main technological solutions
	1.2.1 Speech Commands Dataset
	1.2.2 TensorFlow
	1.2.3 GitHub
	1.2.4 Google Colaboratory
	1.2.5 Programming Technologies

	1.3 Conclusion

	2 Definition of Requirements
	2. 1 Functional Requirements
	2.1.1 Speech Recognition
	2.1.2 Continuous Recognition Style
	2.1.3 Internet independence
	2.1.4 Noise
	2.1.5 Processor power

	2.2 Core Requirements
	2.3 Speech Requirements
	2.4 Documentation Requirements
	2.5 Conclusion

	3 Design and Implementation
	3.1 Architecture of the Proposed Solution
	3.2 Description of Data
	3.2.1 Data Collection
	3.2.2 Data Usage
	3.2.3 Data Storage
	3.2.4 Data Retention

	3.3 Algorithms for solving the problem
	3.4 Conclusion

	4 Deployment and Testing
	4.1 Deployment
	4.2 Implementation of interfaces
	4.2.1 Arduino Example sketch compiling and running

	4.3 Testing the Machine Learning model
	4.4 Testing the library using Arduino Lint
	4.5 Conclusion

	5 Conclusion
	5.1 Optimizing Latency
	5.2 Optimizing Power Usage
	5.3 Optimizing Model and Binary Size

	References

