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Introduction 

Speech recognition, also known as automated speech recognition, machine 

speech recognition, or speech-to-text, is a feature that allows a program to convert 

human speech into written text. Although voice recognition and speech recognition 

are often mixed, speech recognition focuses on the conversion of speech from a 

spoken format to a text format, whereas voice recognition only attempts to recognize 

a particular user's voice [1]. 

As embedded device computing becomes more prevalent, it presents new and 

creative ways for humans and machines to cooperate, connect, and interact. Though 

data has received most of the attention in embedded systems, the incorporation of 

speech into embedded computer applications provides a flexible means of providing 

human interaction, connectivity, and control. Voice, when implemented properly 

and with respect for relevance, prices, and human factors, may offer a more versatile 

user interface at a lower cost than conventional approaches such as touch screens or 

data entry [2]. 

 

There are several advantages to speech-machine interaction: 

• Speech as a form of communication, is more intuitive and simpler. Speech 

recognition is particularly useful when the human's hands or eyes are 

otherwise occupied. For example, it may very be convenient to use verbal 

commands when driving or when multitasking. 

• Speech telephony is a reliable method of bi-directional speech communication 

with devices that can listen and respond without the use of complicated 

commands. 

• Speech integration can reduce or eliminate the need for a touch screen on 

many devices, lowering the cost of the device especially when interacting with 

apps that are not commonly used and do not need a touchscreen. 
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• For people with disabilities that limit them from entering data manually, 

speech enablement is a vital method of interacting with various devices. 

Speech communication with computers enables the remote control of various 

functions that would otherwise be manual [3]. 

 

Several firms have also made available various speech recognition algorithms, 

databases, and templates. These services enable developers to add products like a 

digital personal assistant or even speech-controlled home automation systems. These 

products are common because they simplify and automate activities that can be time-

consuming and repetitive. Consider an apartment where every part of the house is 

linked to a smart assistant device. It will be as easy as instructing the device to 

activate night mode, switch off all lights, lock all doors and windows, and activate 

the security alarm. 

 

The purpose of the research:  

To create a software complex to enable running of machine learning 

algorithms for speech recognition on small devices with limited power and 

computing capabilities Tasks necessary to achieve the goal: 

• Analyzing the market for existing libraries. 

• Collect a keyword dataset to use to train a machine learning model for speech 

recognition. 

• Design a model architecture for MBEDSpeech. 

• Training the MBEDSpeech Model  

• Testing and deploying the model to different embedded device Platforms in 

a way that can be used by other developers. 

• Integrating MCU code with deployed library as an interfacing example 

• Testing the integrated model 
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Structure of the Thesis 

This thesis consists of five main chapters: Introduction, definition of 

requirements, design and Implementation, deployment and testing, conclusion, and 

references. 

In the first chapter, we will have the subject area analysis briefly then have an 

overview of analogues and the main technological solutions that I will use will be 

featured. All the different software platforms to be used will be adequately 

described. 

In the second chapter, there is a description of both functional and non-

functional requirements as well as a description of how the various software 

components will interact with each other. We then finish by describing how 

documentation will be done for the device. 

In the third chapter we describe the design and implementation of the software 

and how the different components will interact with each other as well as the 

algorithms for tackling the problem and a description of the data.  

In the fourth chapter we will do deployment and testing for both the software 

accuracy and the hardware performance and interfacing with a real MCU. For this 

practice we will use an Arduino MCU. 

Finally in the fifth chapter we will have a conclusion for the thesis, with future 

improvements to the solution being discussed as well as opportunities. 

 

Subject Area Analysis 

An ultra-low-power embedded device is one that is inexpensive, runs on a 

few hundred kilobytes of RAM, has similar amounts of flash memory for persistent 

program and data storage, has a clock speed of just tens of megahertz, does not run 

a full operating system, and avoids using dynamic memory allocation functions like 

new or malloc() because they’re designed to be reliable and long-running, and it’s 

extremely difficult to ensure that if you have a heap that can be fragmented [4]. 
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To take advantage of ultra-low-power embedded devices’ low power 

consumption, it is imperative that we merge the embedded software development 

with machine learning since data is the most important by-product of any system. 

One of the most anticipated problems that this combination of disciplines can solve 

through predicting things based on past observations is speech recognition [4].  

To do speech recognition using deep learning, a programmer should feed 

data into learning algorithm that discovers the rules in the data, which then builds a 

model based on the data provided through a process called training and finally data 

is then run through this model to make predictions, a process called inference [4]. 

The past few years has seen products provide a voice user interface (UI) 

designed to give instant access to information without the need for a screen or 

keyboard. All these applications use speech recognition libraries in their 

development as will be discussed below. In most cases, speech recognition is done 

in the cloud, on powerful servers running large ML models bringing up privacy 

issues, efficiency, and speed due to latency and high-power consumptions sending a 

constant stream of data consumes a lot of energy [4]. 

This thesis will therefore focus on training a tiny model that listens for a wake 

words specified in the Speech Commands dataset and run it on a low-powered chip 

and does offline inference as well as give access to other embedded software 

developers to use it in various applications.  

1.1 Overview of analogues 

1.1.1. Kaldi NL 

Kaldi is a speech recognition toolkit written in C++ intended for use by 

researchers whose main goal is to have modern and flexible code, written in C++, 

that is easy to modify and extend. Important features include: 

• It can be used at code-level for integration as a library. 

• It has extensive support for linear algebra. 
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• Kaldi provides algorithms in a way that can easily be extended in the most 

generic form possible. 

• Code for Kaldi is provided using an unrestrictive license: Apache 2.0 

permitting and encouraging modifications and re-release. 

• Kaldi's documentation is complete and highly accessible to everyone [5]. 

1.1.2. Speechmatics 

Speechmatics is speech to text recognition software powered by machine 

learning with high accuracy. The software is available on both cloud and on-premise 

for users; it can also be embedded in devices. It uses a custom language build 

substructure i.e., automatic linguist, which lets the software learn new languages at 

a high pace [6]. 

Speechmatics boasts a high accuracy level that is further boosted by the 

custom dictionary feature. You can add new words to a language quickly. 

Speechmatic takes a new approach to recognize the English language, and it 

provides accurate speech recognition despite the user’s accent. Features of 

Speechmatics include:  

• It gives a very accurate speech to text conversion. 

• It constantly delivers a low word error rate across all the languages it is 

supporting. Speechmatic provides frequent testing of the languages they are 

offering to keep a check on word error rate.  

• It is an industry major in language coverage. Speechmatic is getting updated 

with new vocabulary to meet business-relevant needs.  

• It can be installed with cloud services to avail its speech-to-text technology 

in real-time or, one can avail a pre-recorded (batch) files for on-premise 

installation. Speechmatics provides adjustable deployment. 

• It allows its users to add context-specific words to its dictionary. It enhances 

your transcription accuracy. This feature enables you to define the context 



11 
 

 

of a conversation in advance. You can input variables like name, accents, 

abbreviations, acronyms, special, or industry-specific language, et cetera.  

• It gives advanced punctuation, that is built over 2.5 billion words and holds 

an industry-leading set of supported punctuation marks. This optimizes the 

pace and ease of reading a transcript for human users. 

• The software identifies a change of speaker within the user’s transcript. It 

adds a token automatically when the change in the speaker is noticed. This 

helps in easing the transcript modification for readability [7]. 

 

1.1.3. Google Speech API 

Google Cloud Speech API is a programmatic interface to Google Cloud 

Platform services that allows a user to send speech recognition requests to Speech-

to-Text in any programming language using the Google Cloud Client Libraries.  It 

is a key part of Google Cloud Platform, allowing you to easily add the power of 

speech to everything from computing to networking to storage to machine-learning-

based data analysis to your applications [8]. 

Speech-to-Text can process up to 1 minute of speech audio data sent in a 

synchronous request. After Speech-to-Text processes and recognizes all of the 

audio, it returns a response. A synchronous request is blocking, meaning that 

Speech-to-Text must return a response before processing the next request. 

Speech-to-Text has three main methods to perform speech recognition. 

These are listed below: 

• Synchronous Recognition which sends audio data to the Speech-to-Text 

API, performs recognition on that data, and returns results after all audio has 

been processed.  

• Asynchronous Recognition which sends audio data to the Speech-to-Text 

API and initiates a Long Running Operation which can periodically be 

polled for recognition results. 



12 
 

 

• Streaming Recognition which performs recognition on audio data provided 

within a gRPC bi-directional stream. Streaming requests are designed for 

real-time recognition purposes, such as capturing live audio from a 

microphone. Streaming recognition provides interim results while audio is 

being captured, allowing result to appear, for example, while a user is still 

speaking [9]. 

 

After comparing the different transcribers Google Cloud Speech-to-Text, 

Speechmatics and Kaldi on Word Error Rate and hourly cost to see how they 

compare to each other, I found out what are their weaknesses are and it helped me 

to build up on my proposed solution. 

First, when on comparing Google Cloud Speech-to-Text and Speechmatics, 

both these services are quite similar in their offering: cloud-based speech-to-text for 

many different languages with high performance. Both Google and Speechmatics 

continually update their language models to increase accuracy and introduce new 

words where applicable. This continuous development is a strong point for both, 

especially the introduction of new words which can help with new company names 

and other terms. Both services have a cost per minute of audio transcribed: Google 

uses a fixed price, the price for Speechmatics goes down as more minutes are 

purchased up front. Google has a few different transcription models available more 

than Speechmatics, however [21]. 

On the other hand, Kaldi which is an opensource speech recognition toolkit 

developed and maintained mainly by Daniel Povey with the help of about 70 other 

contributors so far has a lot of flexibility, especially since it’s open source and can 

be extended or improved by anyone who dares understand it. It does carry a lot of 

complexity however, requiring a lot of time and effort to fully learn the quirks.  

Using Word Error Rate, which compares a reference with a hypothesis and is 

given by (Substitutions + Insertions + Deletions) / Number of words, where a 

substitution is when a word is replaced, an insertion is when a word is added that 
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wasn’t said and a deletion is a word that is omitted, Google Speech-to-text scored 

4.9% [10], Speechmatics 14.7% [11] and Kaldi 8.01% [12]. 

 I also compared them in terms of the cost of running for instance on an 

Amazon EC2 instance by dividing costs of the EC2 instance by the amount of audio 

it can transcribe per hour, for a c5.2xlarge instance it costs $0.384 per hour. There 

is an additional monthly fee for storage usage as well, however this does not 

significantly increase hourly costs. 

With the Amazon instance running I also did some testing to determine how 

much audio could be transcribed per hour and determined that we could transcribe 

at a rate of 5 to 10% of the duration of the audio. I determined that it cost about 

$0.038 per hour of transcribed audio for Kaldi NL but $ 2.4 for Speechmatics and $ 

1.4 for the Google Speech API. However, this does not include the cost of setup and 

maintenance! 

Feature Kaldi NL Speechmatics Google Speech 

API 

Language support 60 Languages 21 languages 80 languages 

Cost / min $ 0.038 $ 2.4 $ 1.4 

Speaker detection English (8Khz) No No 

Audio Formats FLAC, Siren, 

WAV, OGG, 

NULAW, Siren 

SR 

FLAC, PCM, 

WAV, OGG, 

NULAW 

FLAC, Linear16, 

MULAW, ARM, 

AMR_W8 

Noise Friendly Yes No Yes 

Word Hints Yes No No 

Internet 

dependency 

Yes Yes Yes 

Table 1 Comparison of analogues 
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1.2 Analysis of the main technological solutions 

1.2.1 Speech Commands Dataset 

The Speech Commands Dataset was created by the TensorFlow and AIY 

teams to showcase the speech recognition example using the TensorFlow API. The 

dataset has 65,000 clips of one-second-long duration. Each clip contains one of the 

30 different words spoken by thousands of different subjects [13]. This dataset will 

be combined with the Microsoft scalable Noisy Speech Dataset, which has a 

collection a variety of environmental noise files in .wav format sampled at 16khz. 

For the unknown category, I will use audio files with a collection of other words that 

are not considered in the dataset classes. 

It has limited vocabulary but is still have enough variety for models trained 

on the data to potentially be useful for some applications. The dataset’s top ten  

common words as the core of our vocabulary that would be useful as commands in 

embedded systems or robotics applications; "Yes", "No", "Up", "Down", "Left", 

"Right", "On", "Off", "Stop", and "Go" [14]. I will be focusing my thesis on these. 

In the second version of the dataset, there are four more command words; 

“Backward”, “Forward”, “Follow”, and “Learn”. One of the most challenging 

problems for keyword recognition is ignoring speech that does not contain triggers, 

so I also needed a set of words that could act as tests of that ability in the dataset. 

Some of these, such as “Tree”, were picked because they sound like target words 

and would be good tests of a model’s discernment. Others were chosen arbitrarily as 

short words that covered a lot of different phonemes. The final list was "Bed", 

"Bird", "Cat", "Dog", "Happy", "House", "Marvin", "Sheila", "Tree", and "Wow”. 

These extra words will be added in a future release of the library. 

1.2.2 TensorFlow 

TensorFlow is an open-source end-to-end platform for creating Machine 

Learning applications. It is a symbolic math library that uses dataflow and 

differentiable programming to perform various tasks focused on training and 
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inference of deep neural networks. It allows developers to create machine learning 

applications using various tools, libraries, and community resources [15]. 

TensorFlow is the best library of all because it is built to be accessible for 

everyone. TensorFlow library incorporates different API to build at scale deep 

learning architecture like CNN or RNN. TensorFlow is based on graph computation; 

it allows the developer to visualize the construction of the neural network with 

Tensor board. This tool is helpful to debug the program. Finally, TensorFlow is built 

to be deployed at scale. It runs on CPU and GPU. To give a concrete example, 

Google users can experience a faster and more refined the search with AI. If the user 

types a keyword to the search bar, Google provides a recommendation about what 

could be the next word [16]. 

Some supported TensorFlow algorithms include: 

• Linear regression 

• Classification 

• Deep learning classification 

• Deep learning wipe and deep 

• Booster tree regression 

• Boosted tree classification [17]. 

1.2.3 GitHub 

GitHub provides combines the distributed version control and source code 

management features of Git with access control, issue tracking, feature requests, task 

management, continuous integration, and wikis for every project [18]. These 

services are free of charge for individuals; however, the more complex professional 

and corporate services are commercial. It provides limitless private repositories to 

all plans, including free accounts, but only allows up to three contributors per 

repository. The following are some of the benefits of utilizing git: 
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• Git performs very strongly and reliably when compared to other version 

control systems. New code changes can be easily committed, version branches 

can be effortlessly compared and merged, and code can also be optimized to 

perform better. Algorithms used in developing Git take the full advantage of 

the deep knowledge stored within, with regards to the attributes used to create 

real source code file trees, how files are modified over time and what kind of 

file access patterns are used to recall code files as and when needed by 

developers.  

 

• Git is designed specially to maintain the integrity of source code. File contents 

as well as the relationship between file and directories, tags, commits, 

versions etc. are secured cryptographically using an algorithm called SHA1 

which protects the code and change history against accidental as well as 

malicious damage. You can be sure to have an authentic content history for 

your source code with Git. 

 

• Git offers support several kinds of nonlinear development workflows and its 

efficiency in handling both small scale and large scale projects as well as 

protocols. It is uniquely designed to support tagging and branching operations 

and store each and every activity carried out by the user as an integral part of 

“change” history. Not all VCSs support this feature. 

 

• Git offers the type of performance, functionality, security, and flexibility that 

most developers and teams need to develop their projects. When compared to 

other VCS Git is the most widely accepted system owing to its universally 

accepted usability and performance standards. 

 

• Git is a widely supported open-source project with over ten years of 

operational history. People maintaining the project are very well matured and 
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possess a long-term vision to meet the long-term needs of users by releasing 

staged upgrades at regular intervals of time to improve functionality as well 

as usability. Quality of open-source software made available on Git is heavily 

scrutinized a countless number of times and businesses today depend heavily 

on Git code quality [19]. 

1.2.4 Google Colaboratory 

 Colaboratory, is a product from Google Research that allows anybody to write 

and execute arbitrary python code through the browser and is well suited to machine 

learning and data science. Colab is a hosted Jupyter notebook service that requires 

no setup to use, while providing free access to computing resources including GPUs 

[20]. 

 

I will be using Colab to: 

• Write and execute code in Python 

• Create/Upload/Share notebooks 

• Import/Save notebooks from/to Google Drive 

• Import/Publish notebooks from and to GitHub 

• Import external datasets e.g. from Kaggle 

• Integrate PyTorch, TensorFlow, Keras, OpenCV 

• Utilize free Cloud service with free GPU 

 

1.2.5 Programming Technologies  

For this project we will use Python, C and C++ as our main programming 

languages for development. Development that tools are required to develop and 

test/debug the code include: 

- Compiler. 

- Debugger. 
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1.3 Conclusion 

The following components are being used for this project. It is urgent and 

under development right now: 

1. Google Speech Dataset 

2. TensorFlow 

3. Keras 

4. GitHub 

5. Google Colab 
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2 Definition of Requirements 

2. 1 Functional Requirements 

2.1.1 Speech Recognition  

The MBEDSpeech recognition library allows 1 second word length of a 10 

word vocabulary. It stores the "trained" word patterns used for recognition in internal 

memory. The main board has a charging port that can be hooked up to a battery to 

power the static ram when the main circuit is turned off. This keeps all the trained 

words safely stored in memory (SRAM) so the circuit does not have to be retrained 

every time it is turned on. 

2.1.2 Continuous Recognition Style 

It is the natural conversational speech people are accustomed to in everyday 

life. It is extremely difficult for a recognizer to shift through the text as the words 

tend to merge together. Isolated speech recognition system is another feature, of the 

IC that is used by MBEDSpeech. 

2.1.3 Internet independence 

 The machine learning model used by MBEDSpeech should run on the MCU 

offline. 

2.1.4 Noise  

 MBEDSpeech should be able to work well in noisy environments by 

automatically recognizing and filtering out the noise. 

2.1.5 Processor power 

 MBEDSpeech should run on an edge device with a 32-bit ARM Cortex-M4F 

microprocessor running at 64MHz with 1MB of program memory and 256KB RAM 

 

2.2 Core Requirements 

2.2.1. MBEDSpeech shall be able to classify audio in Realtime. 

2.2.2 MBEDSpeech shall be compatible with edge Devices from Arduino, STM 

Electronics and NVDIA 
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2.2.3 MBEDSpeech shall be easy to use by developers through bootstrapping of all 

the required code and shall have comments 

2.2.4 MBEDSpeech prototype used for this thesis will be limited to 4 words to assess 

how effective the approach taken is, then be updated, through GitHub to include all 

the words in the Google Speech Commands Dataset for completeness 

2.2.5 MBEDSpeech shall provide binary files for testing on the devices targeted 

 

2.3 Speech Requirements 

The following guidelines are specific to speech: 

2.3.1 MBEDSpeech SHALL use only approved keywords words found in the 

Google Speech Commands Dataset. 

2.3.2 MBEDSpeech SHALL provide serial output to indicate when the Microphone 

Off. 

2.3.3 MBEDSpeech shall recognize words in English only for the scope of this thesis 

2.3.4 The audio used for MBEDSpeech training shall be 16KHz 

 

2.4 Documentation Requirements 

Documentation of this library will be delivered in various formats including 

pdf, ppt, html and docx and will be English language. This documentation will be 

the user manual for “MBEDSpeech” outlining its various features and how to use 

the Library for microcontroller development. It will contain all the options for 

deploying the service on various MCUs.  

Error codes will also be explained and several solutions or how to avoid or 

solve them will also be outlined. 
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2.5 Conclusion 

In this chapter, we defined the various core and speech requirements for 

MBEDSpeech. We also described how the various software components within it 

will interact with each other. Lastly, we gave the documentation requirements that 

described among other things the user manual and its contents. 
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3 Design and Implementation 

3.1 Architecture of the Proposed Solution 

The MBEDSpeech Library is composed of various components, as shown in 

the image below. First, the microphone receives audio input then using MFCC (Mel 

frequency cepstral coefficients) extracts features and at the same time reducing the 

magnitude of the speech signal devoid of causing any damage to the power of speech 

signa. The inference is then run on the features outputting class probabilities as 

shown in the diagram below. 

 

 
Figure 1   MBEDSpeech Architecture 
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 The model used in this thesis is trained to recognize the words "Yes", "No", 

"Up", "Down", "Left", "Right", "On", "Off", "Stop", "Go", noise and unknown 

speech, but the list will be updated after a first successful deployment. The model 

takes in one second worth of data at a time and outputs the probability scores. This 

data is consumed by the model in terms of spectrograms which are two-dimensional 

arrays that are made up of slices of frequency information, each taken from a 

different time window. 

 

3.2 Description of Data 

3.2.1 Data Collection 

 Audio is continuously sampled at 16 KHz using a microphone. The data is 

then temporarily stored in the device before being passed to the MFCC which 

converts raw audio data into spectrograms that will be run through the inference. 

Users’ exposure to malicious actions by other users by discarding the data 

completely. 

3.2.2 Data Usage 

 After the raw data is run through inference, probabilities for the various 

classes of data is then calculated and displayed on the serial monitor for every second 

of data. At this point a command recognizer could be programmed to undertake a 

certain command which the command responder will execute. 

3.2.3 Data Storage 

Different metadata is generated and stored by the MBEDSpeech system for 

the purposes of device diagnostics and service improvements. Audio inputs being 

the core piece of MBEDSpeech data, is however not sored because of the size of 

devices that MBEDSpeech is targeting. Speech is processed through the neural 
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network and then to extract the user's intent. These system uses machine learning 

techniques to continuously improve itself with each input. 

 

3.2.4 Data Retention 

Data is not in any way stored through the MBEDSpeech Library, but if the 

developer of the device decides to store data, they are free to do so. As for the 

metadata, access is granted via specific, audited permissions and access to customer 

data requires review and approval by the responsible managers. Additionally, the 

permissions to access this metadata are reviewed and positively confirmed by 

management at least quarterly and access is audited. 

Some system level data is also stored in log files, for either service 

troubleshooting purposes, or security incident resolution. Troubleshooting logs 

contain information necessary for developers to troubleshoot the MBEDSpeech 

Library, but do not contain customer speech recordings or data derived from 

customer speech recordings. Access to these logs is restricted to teams needing 

access to this data to perform their business functions. Troubleshooting logs are 

encrypted and their access is audited. 

We apply retention policies to data to minimize the (meta)data we retain. Data 

is retained when it serves a business purpose (including providing the service to 

customers and improving our systems) or as necessary to comply with law. We also 

offer debug interfaces like SWD and we also have disabled code readout on Arm 

platforms. Even though these measures are not perfect, they will raise the cost of an 

attack 

The speech recognition and natural language understanding in the 

MBEDSpeech system are based on machine learning (ML) algorithms. Data sets 

from real use cases are fed into the various ML systems to build new algorithms and 

improve existing algorithms.  
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3.3 Algorithms for solving the problem 

3.3.1 Audio as data 

The first step to do speech recognition for our dataset will be to extract 

features. This is the identifying of components of the audio signal that are good for 

identifying the content while eliminating background noise. Mel Frequency Cepstral 

Coefficients (MFCCs), Introduced by Davis and Mermelstein are widely used for 

automatic speech recognition [21]. 

First the signal needs to be framed into short frames, then for each frame we 

need to calculate the periodogram estimate of the power spectrum. After this we 

apply the mel filterbank to the power spectra and summing the energy in each filter. 

The fourth step will be to take the logarithm of all filterbank energies, then taking 

the DCT of the log filterbank energies before finally keeping the DCT coefficients 

2 – 13 and discarding the rest of them [22]. 

The MFCC process transforms audio into a table of data where each row 

represents a range of frequencies and each column represents a span of time. The 

value contained in each cell represents the amplitude of its associated range of 

frequencies during that span of time. The spectrogram shows each cell as a colored 

block, the intensity of which varies by amplitude [23]. Examples of the spectrograms 

on some of the keywords are as shown below: 

 

 

Figure 2 Spectrogram of  unknown speech 
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Figure 3 Spectrogram of background  noise 

 

 

Figure 4 Spectrogram of  "stop" 
 

Figure 5 Spectrogram of "right" 

 

 

3.3.2 Convolutional neural networks 

Convolutional neural networks (CNN) are Deep Learning algorithms that take 

image inputs then assign weights and biases to various parts of the image to be able 
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to differentiate it from another image. For the Convolutional Neural Network in this 

thesis, we will use the spectrograms of the different words we are trying to recognize 

as input. It will then reduce the images into a form that is easier to process without 

losing features critical for good prediction [24]. 

3.3.2.1 Convolution Layer 

 The convolution operation extracts high level features from the input image. 

Convolutional neural networks can have multiple convolution layers with the first 

being responsible for capturing low-level features and adapting to high-level with 

added layers, giving a network with a wholesome understanding of images in the 

dataset [25]. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6 Convolutional Operation 

3.3.2.2 Pooling Layer 

 By reducing the spatial size of the convolved feature, the pooling layer 

decreases the computational power required to process the data through 
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dimensionality reduction. The Convolutional layer and the pooling layer together 

form the i-th layer of a convolutional neural network, with the number of such layers 

dependent on the image complexity. This process enables the model to understand 

the features [26]. 

3.3.2.3 Classification 

 This phase flattens the image into a column vector then fed to a feed-forward 

neural network and back propagation applied to every iteration of training since the 

input image has already been converted into a suitable form for our multi-level 

perceptron. Over a series of epochs, the model is able to distinguish between 

dominating and certain low-level features in images and classifies them using the 

Softmax classification technique [27]. 

3.4 Conclusion 

The model trained in this chapter will then be converted into a TensorFlow 

Lite model which can now run on microcontrollers. This TensorFlow Lite model 

will be the main inferencing component of the EMBEDSpeech Library interface for 

different vendors, the focus in this thesis being Arduino. This Library will deliver a 

seamless and efficient keyword spotting service for the Google Speech Command 

Dataset on MCUs. The user will be able to use this library to perform machine 

learning on their Low Power MCU for real-time speech recognition. 
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4 Deployment and Testing 

4.1 Deployment 

The MBEDSpeech library has been added to the official Arduino Library 

Manager as shown in the list below of all the repos that are included in the Library 

Manager. 

 

Figure 7 EMBEDSpeech entry in the Arduino Library Index 

Figure 8 EMBEDSpeech Arduino Library description on 
arduinolibraries.info 
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4.2 Implementation of interfaces 

4.2.1 Arduino Example sketch compiling and running 

To add the Library to Arduino IDE, the user has 2 options. 

The first option is by using the Arduino Library Manager. This can be found in the 

Tools > Manage Libraries menu or using the shortcut ctrl + shift + I  

in the resulting window, search for “MBEDSpeech”, then click on install when the 

Library is found as shown below: 

 

Figure 9 EMBEDSpeech Library in Arduino Library Manager 

 

Alternatively, the user can go to the MBEDSpeech git repository at the link: 
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https://github.com/kchemorion/MBEDSpeech and download the zip either from the 

latest development branch or from the certified releases: 

 

 

Figure 10 EMBEDSpeech Github 

 

Or 

 

Figure 11EMBEDSpeech Github Release 

 

Then add the zip file manually through the sketch menu: 

https://github.com/kchemorion/MBEDSpeech
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Figure 12 EMBEDSpeech Library Manual Addition 

 

 

Figure 13 EMBEDSpeech Library Externally added 
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Open examples to see a default example that can be modified for the developer’s 

use: 

 

Figure 14 EMBEDSpeech Arduino example 

The Arduino example sketch compiles successfully: 

 

 

Figure 15 EMBEDSpeech Compilation success 
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And runs successfully giving correct predictions when words are said through the 

microphone: 

 

Figure 16 EMBEDSpeech Inference running 

4.3 Testing the Machine Learning model 

 For testing the neural network, 20% of the data used for training and 80% 

sample data that the CNN had not interacted with was used to evaluate how the 

model is performing. Accuracy of the model was measured as the percentage of 

windows of audio that were correctly classified 

A Confusion matrix is a table showing the balance of correctly versus 

incorrectly classified windows. This is by comparing the values in each row, the On-

device performance region shows statistics about how the model is likely to run on-

device, inferencing time is an estimate of how long the model will take to analyze 

one second of data on a typical microcontroller, peak is how much RAM will be 

required to run the model on-device. 

 For EMBEDSpeech, the following were the results of testing the model: The 

accuracy is 87.6%, an inferencing time of 4ms, peak ram usage of 4.3k and ROM 

usage of 47.3k. The confusion matrix is as shown below: 
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 DOWN GO LEFT NO NOISE OFF ON RIGHT STOP UNKNOWN UP YES 
DOWN 73.30% 13.10% 0.30% 2.10% 3.60% 0.60% 0.90% 0% 1.50% 1.20% 1.80% 1.80% 

GO 8.40% 74.00% 0.60% 0.60% 4.30% 3.10% 1.20% 0.30% 1.90% 0.90% 3.40% 1.20% 
LEFT 0.60% 0.60% 79.60% 0.30% 5.20% 1.20% 0% 4.30% 0.60% 0.30% 0.60% 6.70% 

NO 4.00% 18.00% 2.10% 67.00% 3.10% 0.60% 0.90% 0.60% 0% 0.60% 1.80% 1.20% 
NOISE 0% 0% 0.20% 0% 96.60% 0% 0.20% 1.00% 0.20% 0.20% 0.70% 0.70% 

OFF 0% 0.90% 0.30% 0% 4.90% 78.70% 0.90% 0% 0.90% 0% 13.00% 0.30% 
ON 0.90% 0% 0.30% 0% 5.10% 5.70% 84.10% 0.90% 0% 0.60% 2.40% 0% 

RIGHT 0% 0% 2.50% 0% 3.90% 0.60% 1.10% 91.70% 0% 0% 0.30% 0% 
STOP 0.30% 3.40% 0% 0% 15.80% 2.10% 0% 0% 68.50% 0.30% 9.60% 0% 

UNKNOWN 2.00% 10.70% 6.10% 3.10% 11.20% 4.10% 18.90% 14.80% 4.10% 18.90% 4.10% 2.00% 
UP 0.30% 2.10% 0.60% 0% 14.10% 6.50% 0.90% 0% 0.30% 0.30% 75.10% 0% 

YES 0% 0.30% 4.70% 0.30% 4.00% 0% 0% 0.30% 0% 0.30% 0% 90.10% 
F1 SCORE 0.78 0.67 0.82 0.78 0.77 0.78 0.83 0.89 0.77 0.3 0.72 0.88 

 

Figure 17EMBEDSpeech Confusion Matrix 

 

4.4 Testing the library using Arduino Lint 

The Arduino team created a tool to check Arduino projects for common 

problems. Arduino Lint runs over 175 checks on your sketches, libraries, and boards 

platforms which cover specification compliance, Library Manager submission 

requirements, and best practices. 

When I run Arduino Lint on my Library, all checks are passed as seen in the outputs 

below: 

Figure 18 Arduino Lint Test Results 
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Figure 19 Arduino Lint test results json 

4.5 Conclusion 

In this chapter we have looked at the deployment of EMBEDSpeech to the 
Arduino library manager and have also conducted testing for the machine learning 
model which returned an accuracy of 86% and tested the Arduino library using 
Arduino lint. The library is now ready for use by other developers.  
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5 Conclusion 

This project undertakes a viable solution for the need of machine learning at 

the very basic level, that is, in low powered embedded devices. The project will 

enable us to bring device with a microcontroller under the control of our voice 

without having connect to any speech recognition cloud services. It basically uses 

the commands in the speech command dataset, which is carefully chosen and ideal 

for robotic applications.  

 

The tasks solved in this thesis include  

a) Development of a Library that allows real-time classification of raw audio 

that can run in Arduino microcontrollers. This is by developing a machine 

learning model that can identify different words in the Speech commands 

dataset. 

b) Development of a library that runs on devices that consume low power and 

have low processing capabilities by converting the machine learning model 

into a TensorFlow Lite model that can run in very small devices.  

c) Testing of the library has been done using Arduino Lint and an example of 

how to implement interfaces is added into the Library and can be accessed 

using the Arduino IDE.  

d) Deployment of the library in a version control environment (GitHub) has been 

done. The link to the repository is: 

https://github.com/kchemorion/MBEDSpeech.git .  

e) This Library has been deployed into the Arduino library manager for all MCU 

architectures. Link to information about the Library is : 

https://www.arduinolibraries.info/libraries/mbed-speech . 

 

Due to the successful running of the initial library release, the next steps will 

be to add the rest of the keywords present in the speech dataset with the 1.0.2 release. 

https://github.com/kchemorion/MBEDSpeech.git
https://www.arduinolibraries.info/libraries/mbed-speech
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Optimizations as well will be done to tune the performance of the library as shown 

below: 

5.1 Optimizing Latency 

 Designing model architectures is difficult and time-consuming, but there have 

recently been some advances in automating the process, such as MnasNet, using 

approaches like genetic algorithms to improve network designs. These are still not 

at the point of entirely replacing humans. 

I am therefore looking forward to using ready services like AutoML that allow 

users to avoid many of the gritty details of training, be able to design the best possible 

model for your data and efficiency trade-offs solving latency issues. 

5.2 Optimizing Power Usage 

 For this I will try to estimate how much power the model uses on different 

devices by measuring the latency for running one inference, and then multiplying 

the average power usage of the system for that period to get the energy usage. After 

knowing how many arithmetic operations a model requires, and roughly how many 

operations per second a processor can perform, I can roughly estimate the time that 

model will take to execute. I intend to get these device power usage numbers at a 

particular frequency and voltage from datasheets. 

5.3 Optimizing Model and Binary Size 

Currently during training, weights are usually stored as floating-point values, 

taking up 4-bytes each in memory. Because space is such a constraint for embedded 

devices, I will use the compression utility in TensorFlow Lite to reduce those values 

down to a single byte in a process called quantization. It works by keeping track of 

the minimum and maximum values stored in a float array, and then converting all 

the values linearly to the closest of 256 values equally spaced within that range. 

These codes are each stored in a byte, and arithmetic operations can be performed 

on them with a minimal loss of accuracy. 
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