Интерактивная обучающая 3D программа «Спутниковая система навигации»

Авторы работы: Уткин Н.С.

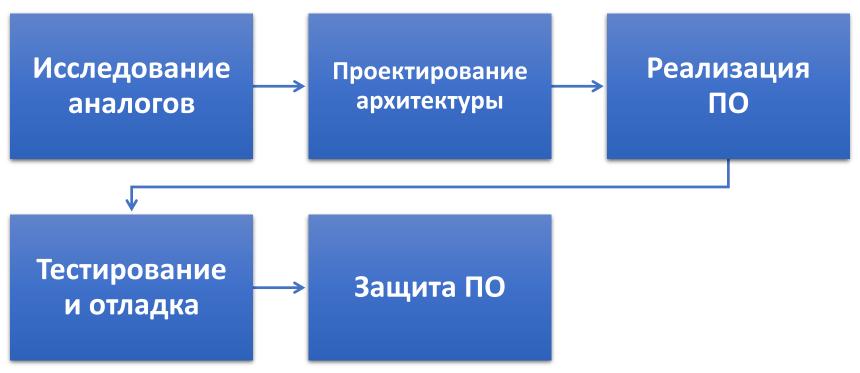
Группа: КЭ-222

Научный руководитель: Доцент и к.т.н Надточий И.Л.

Рецензент: Рук-ль отдела «Компьютерные сети

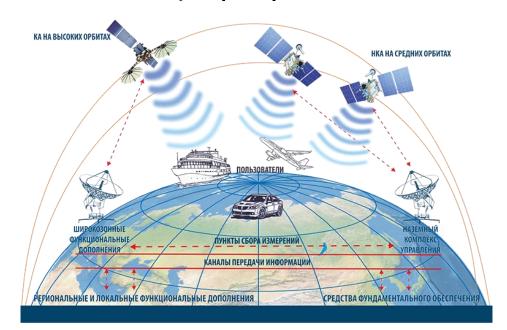
и телекоммуникации»

ООО НПП «Учтех-Профи» и к.т.н.


Домбровский Кирилл Александрович

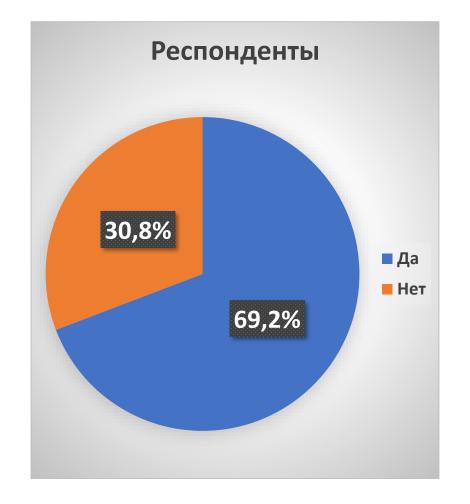
Оглавление

- Цели и задачи
- Актуальность темы
- Исследование
- Сравнение с аналогом
- Сравнение средств разработки
- Структура программы
- Пример реализации сцены
- Результаты работы
- Заключение


Цель и задачи работы

Реализовать интерактивную обучающую программу «Спутниковые системы навигации» на графической платформе.

Актуальность темы


- Спутниковые навигационные системы активно используются в жизнедеятельности человека.
- Визуальная, наглядная и удобная демонстрация данной системы доносит тонкости работы технологии; интерактивность дает понимание. Таким образом, усваиваемость материала улучшается.
- Применение для студентов и выпускников, разрабатывающих программно-аппаратные комплексы с применением технологии систем спутниковой навигации (ССН).

Исследование

Последний вопрос в опросе:

«Улучшилось ли бы понимание об устройстве ССН, если бы в вашем изучении вы использовали интерактивную обучающую 3D программу на компьютере?»

Сравнение с аналогом. Внешний вид.

Проект НПП «Учтех-профи»

Проект ПО «Зарница»

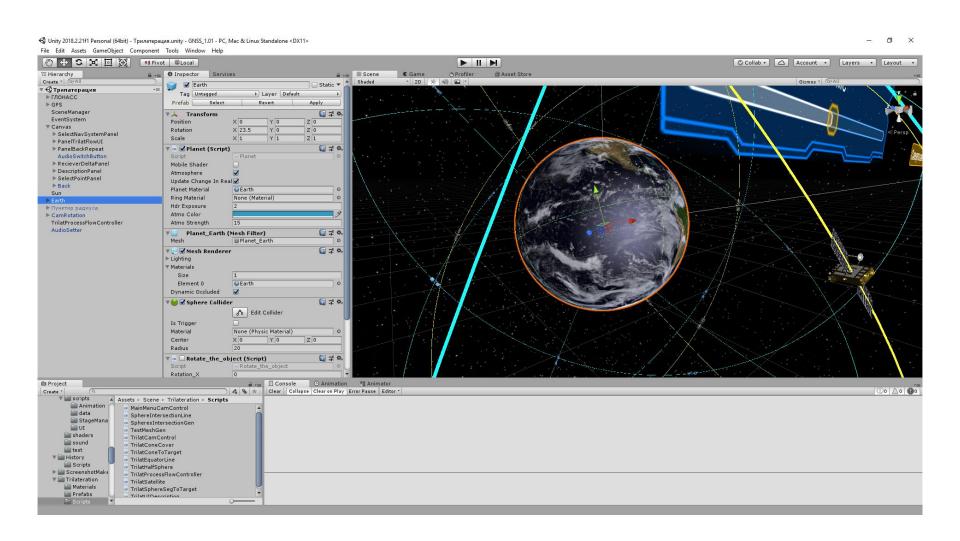
Продемонстрирован весь стенд

Продемонстрирована основная составляющая стенда

Сравнение с аналогом. Характеристики.

Продукт Особенности	Интерактивный диорамный макет	Разрабатываемый программный комплекс
Физическое взаимодействие	✓	×
Аудио сопровождение	✓	✓
Интерактивность	✓	✓
Демонстрация всех ключевых моментов тематики	×	√
Универсальность использования	×	✓
Улучшения и обновления	×	✓
Рассмотрены две основные ССН	×	✓

Сравнение средств разработки

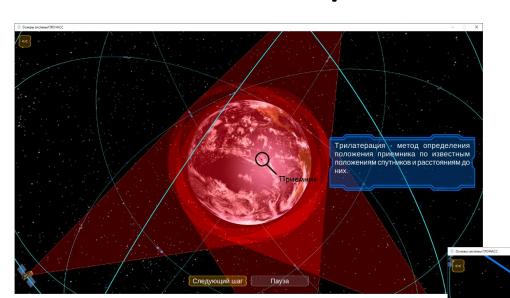

Сводная информация рассматриваемых движков

Игровой движок	Язык	Поддерживаемые платформы	2D	3D	Лицензия / цена	
Unity	C#	Десктопные: Windows, Mac Os, Linux Мобильные: Android, iOS	Да	Да	Бесплатно для личного пользования	
Unreal Engine	C++, VisualScripting	Десктопные: Windows, Mac Os, Linux Мобильные: Android, iOS	Нет	Да	Бесплатно, открытый исходный код	
CryEngine	C / C++	Десктопные: Windows, Linux Мобильные: iOS, Android	Нет	Да	Бесплатно	

Оценка игровых движков на основе модели MULER

Игровой движок	Модульность	Удобство использования	Библиотеки ресурсов	Эффективность	Эффекты визуализации и качество изображения	
Unity	1	5	Много ресурсов	Приемлемо	Приемлемо	
Unreal Engine	4	4	Много ресурсов	Отлично	Отлично	
CryEngine	3	5	Много ресурсов	Отлично	Отлично	

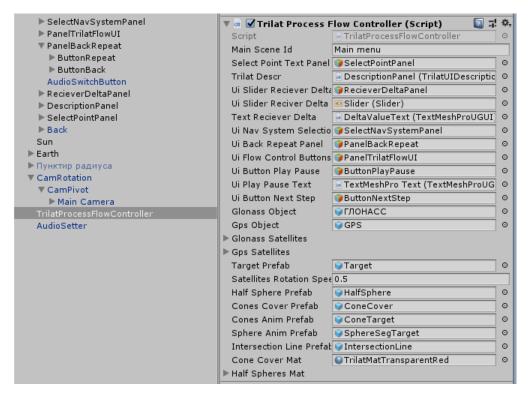
Визуальный редактор Unity


Структура программного приложения

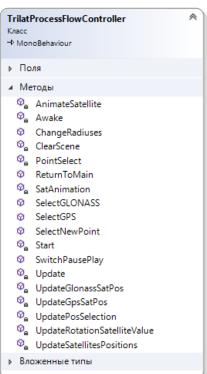
Пример реализации сцены. Работа сцены.

Ошибка хода часов приемника

Сменить систему


Выбор точки местоположения объектаприемника

Результат определения местоположения


Четвертый спутынк позволяет устранить ощибку хода часов приемника (время на приемнике корректируется так, чтобы минимизировать расстояние между точками, полученными от пересечения триплетов сфер {1, 2, 3}, {1, 2, 4}, {1, 3,

4}, {2, 3, 4}})

Пример реализации сцены. Ключевой скрипт (класс) сцены.

Экземпляр класса *TrilatProcessFlowController* как компонент на сцене

Структура класса TrilatProcessFlowController

Пример реализации сцены. Ключевые блоки кода.

Обработка нажатия мыши на поверхность Земли

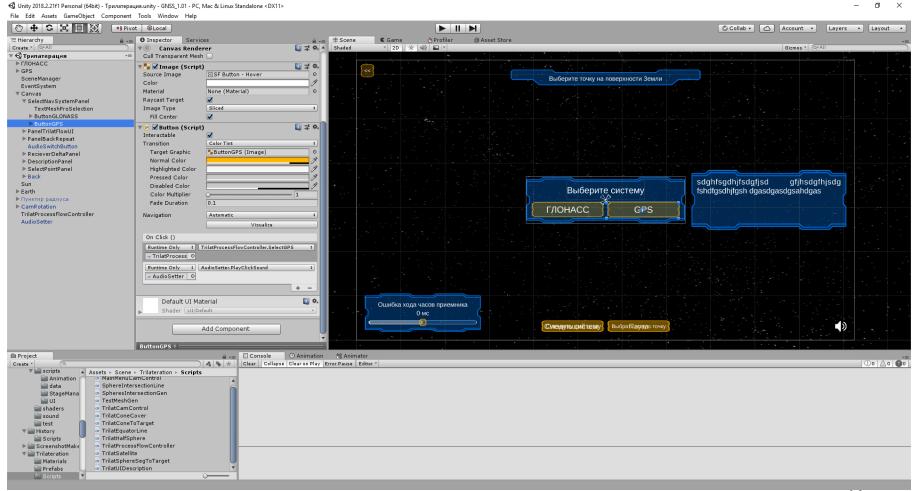
Поиск ближайших спутников

```
target = Instantiate(targetPrefab);
target.transform.position = pos;
target.transform.rotation = Quaternion.LookRotation(normal);

closestSats = currentSats.OrderBy(sat => Vector3.SqrMagnitude(sat.GetPosition() -
target.transform.position)).Take(numUsedSats).ToArray();
```

Трансформация фигур

```
while (timer < growthTime)


while (timer < growthTime)

if (!animPaused)

f 
halfSpheres[num].transform.localScale = Vector3.one * Mathf.Lerp(0, maxLen, timer / growthTime);

timer += Time.deltaTime;</pre>
```

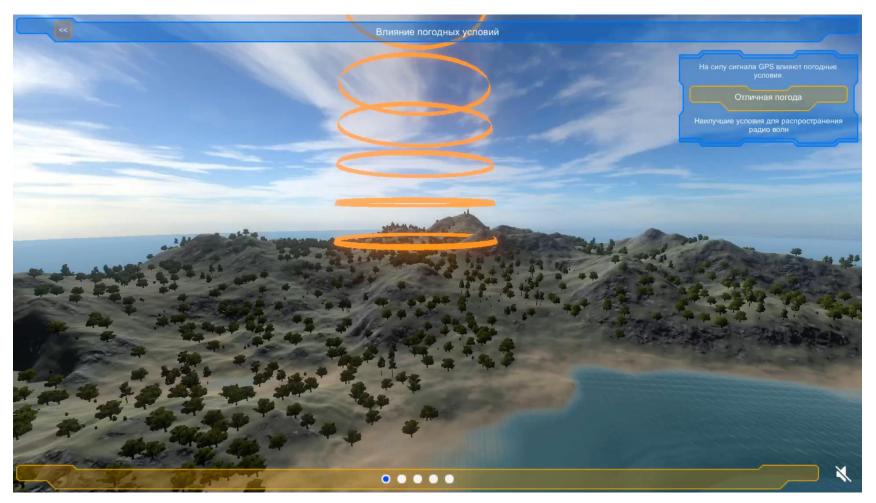
Пример реализации сцены. Интерфейс.

Работа приложения.

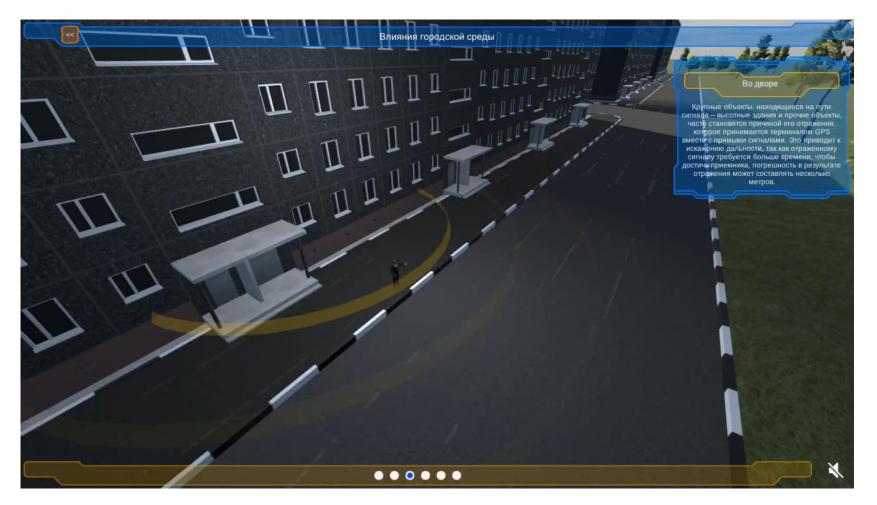
Модуль 1 «История возникновения и развития ССН»

История развития ГЛОНАСС.

Сравнение развития ССН по временной шкале. При наведении на год подсвечивается краткая информация.

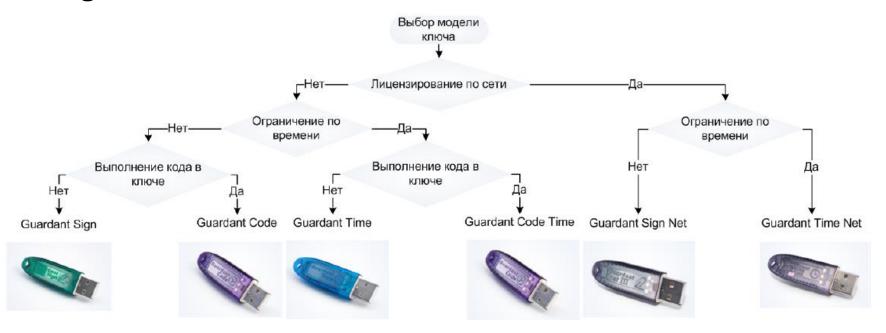

Работа приложения. Демонстрация работы модуля «Структура и отличия ССН».

Работа приложения. Демонстрация работы модуля «Принципы определения местоположения».


Работа приложения. Демонстрация работы модуля «Факторы, влияющие на сигнал» - «Дождь».

Работа приложения. Демонстрация работы модуля «Факторы, влияющие на сигнал» - «Атмосфера».

Работа приложения. Демонстрация работы модуля «Факторы, влияющие на сигнал» - «Город».



Работа приложения. Демонстрация работы модуля «Факторы, влияющие на сигнал» - «Город».

Защита приложения

С точки зрения необходимой функциональности подходящим электронным ключом является «Guardant Sign»

Внедрение

Приложение 1 к договору № 72/04-02 от <u>18 октября 2</u>018 г.

СПЕЦИФИКАЦИЯ

N≥	Наименование	Цена	Кол-во	Ед. изм.	Сумма, руб.
	Программный модуль по предмету "Основы системы Глонасс"	American International States	1	шт.	
	ИТОГО (НДС - нет)				- Internal Community

Основные результаты

- Проведено исследование актуальности разрабатываемого приложения
- Проанализирован аналог и проведено планирование разработки проекта
- Реализовано приложение в среде разработки Unity
- Внедрена защита ПО
- Произведено внедрение программы
- Научная новизна исследования состоит в том, что в работе впервые разработан интерактивный 3D учебник по теме "Системы спутниковой навигации"