

Руководитель работы, доцент каф. «Электронные вычислительные машины» И.Л. Кафтанников

Автор работы студент группы КЭ – 222 Н.Д. Топольский

Программно-аппаратный комплекс цифровой подстанции

- 1 открытое распределительное устройство, 2 измерительные трансформаторы,
- 3 коммутационное оборудование, 4 устройство сопряжения, 5 удалённый терминал,
- 6 контроллер присоединения, 7 релейная защита и автоматика, 8 другие интеллектуальные электронные устройства, 9 сервер SCADA, 10 APM оператора.

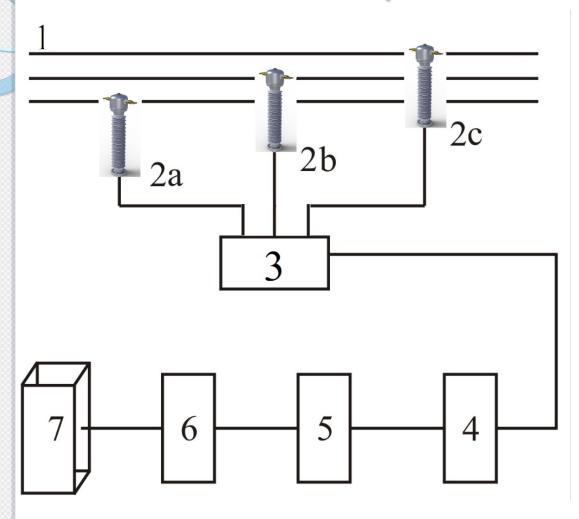
Цель работы:

Разработка программных решений по интеграции в структуру программно-аппаратного комплекса цифровой подстанции отечественных цифровых комбинированных измерительных трансформаторов тока и напряжения

Решаемые задачи

- анализ возможности разработки элементов программно-аппаратного комплекса цифровых подстанций на отечественной элементной базе;
- разработка алгоритмов работы цифрового комбинированного измерительного трансформатора, ориентированных на обеспечение совместимости оборудования цифровых подстанций согласно стандарту МЭК-61850;
- проведение компьютерного моделирования исследовательских испытаний и опытной эксплуатации интеллектуальных электронных устройств.

Экспериментальный образец цифрового измерительного трансформатора (ЦИТ)



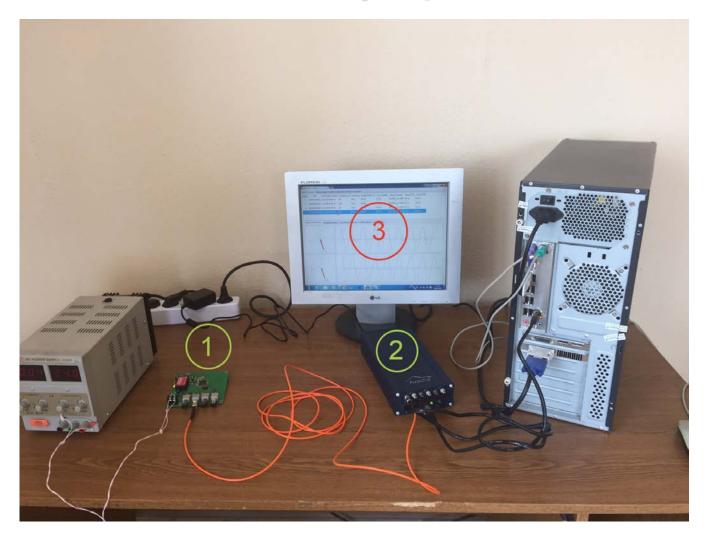
- •Класс напряжения 110 кВ.
- •Номинальный первичный ток 150...1200 А.
- •Класс точности измерения тока для АСКУЭ 0,2.
- •Класс точности измерения тока для РЗА 5.
- •Класс точности измерения напряжения 0,2.
- •Протокол передачи данных МЭК 61850-9-2.
- •Габаритные размеры датчика на ОРУ 1540х320х450 мм.
- •Масса 120 кг.

ЦИТ без колпака

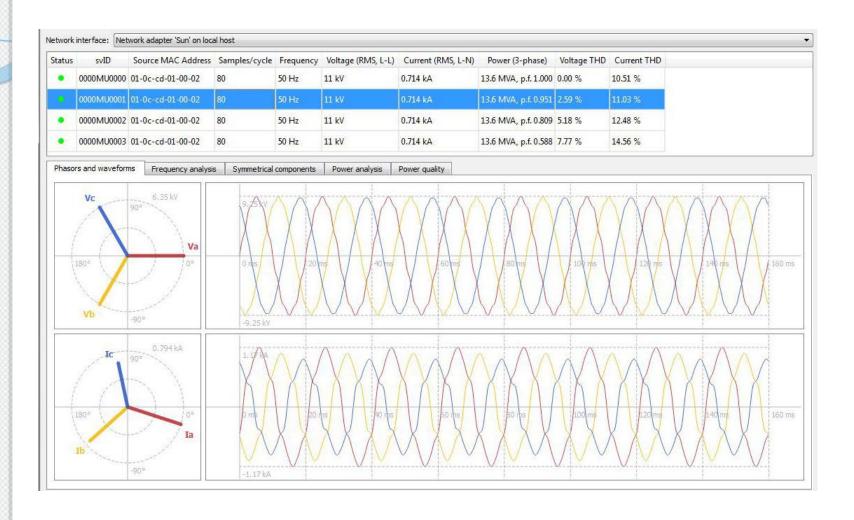
Физическая топология информационной сети ЦИТ-SCADA

1 — токоведущий высоковольтный проводник; 2a, 2b, 2c — ЦИТ фаз a, b и с соответственно; 3 — оконечное устройство (Merging Unit);

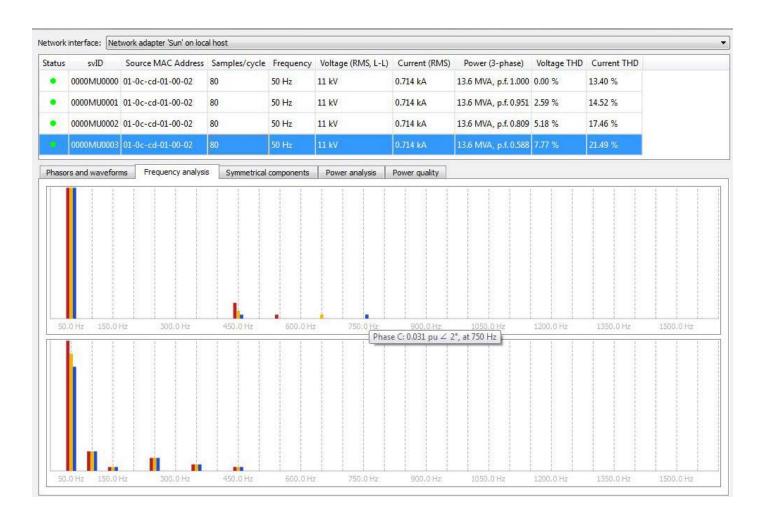
- 4 шина процесса;
- 5 релейная защита и автоматика (P3A);
- 6 станционная шина,
- 7 сервер SCADA.

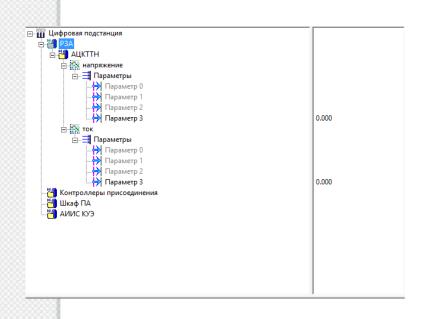

Формат пакета передачи данных от ЦИТ к оконечному устройству

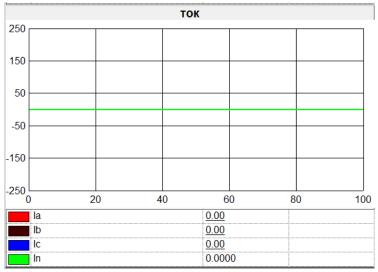
0	AAh	Заголовок пакета
1	FFh	Код формата пакета
2	State	Байт статуса
36	u(t)	Напряжение в вольтах с измерительного делителя в формате float,
		4 байта. Формат здесь и далее - число с одинарной точностью в
		соответствии с IEEE 754-1995. Младший байт - первый
-		
710	i _{tt} (t)	Значение тока с измерительного TT в формате float, 4 байта
1114	$i_{np}((t)$	Значение тока с пояса Роговского в формате float, 4 байта
1518	u _{нв} (t)	Напряжение в вольтах с делителя напряжения на низкой стороне
		в формате float, 4 байта
19, 20	num	Номер отсчета с момента прихода импульса 1PPS в диапазоне
		012799. В случае пропуска сигнала 1 PPS выходит за диапазон
21	CRC8	ЦКС по алгоритму Maxim/Dallas
22	F0h	Маркер конца пакета

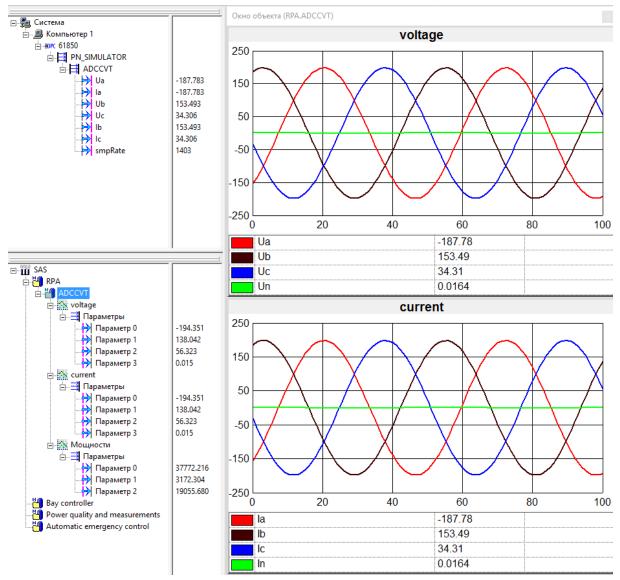

Общий вид кадра формата МЭК 61850

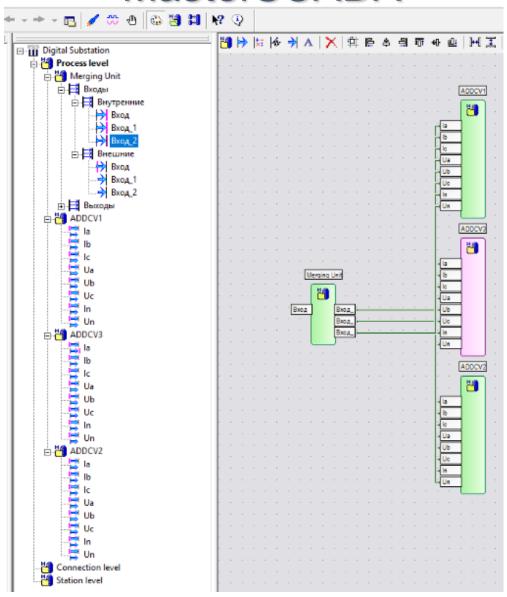
	Преамбула (7 байт)
	Начало кадра (1 байт)
Заголовок МАС	Адрес получателя (6 байт)
Jai OJOBOK WIAC	Адрес отправителя (6 байт)
Идентификатор протокола	Тег приоритета, CLI- флаг канонического формата
тегирования и тег	(для Ethernet 0) и VLAN ID (4 байта)
Тип	Ethernet-тип / длина (2 байта)
	APPID (2 байта)
Ethernet-тип PDU	Длина (2 байта)
(создаваемый источником)	Резерв 1 (2 байта)
(создаваемый источником)	Резерв 2 (2 байта)
	APDU
	FCS – контрольная последовательность фрейма (4
	байта)


Исследовательские испытания оконечного устройства


Программа визуализации потока МЭК-61850


Программа визуализации потока МЭК-61850


Реакция MasterSCADA на состояния ЦИТ «Отсутствует напряжение» и «Активация»



Peaкция MasterSCADA на состояние ЦИТ «Нормальные условия»

Мнемосхема уровня процесса в MasterSCADA

- 1. Проведенный анализ подтверждает возможность разработки элементов программно-аппаратного комплекса цифровых подстанций на отечественной элементной базе;
- 2. Разработанные алгоритмы работы цифрового измерительного трансформатора обеспечивают совместимость оборудования цифровых подстанций согласно стандарту МЭК-61850;
- 3. Проведенное компьютерное моделирование исследовательских испытаний и опытной эксплуатации интеллектуальных электронных устройств показало возможность в реальном времени производить передачу метрологической информации в соответствии с МЭК 61850.

Спасибо за внимание!

