
МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ
Федеральное государственное автономное

образовательное учреждение высшего образования
«Южно-Уральский государственный университет
(национальный исследовательский университет)»

Высшая школа электроники и компьютерных наук
Кафедра «Электронные вычислительные машины»

 ДОПУСТИТЬ К ЗАЩИТЕ

Заведующий кафедрой ЭВМ
____________ Д.В. Топольский
«___»__________ 2025 г.

Создание цифровой платформы кадровых ресурсов

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА
К ВЫПУСКНОЙ КВАЛИФИКАЦИОННОЙ РАБОТЕ

ЮУРГУ-090301.2025.405 ПЗ ВКР

 Руководитель работы,

к. т. н., доцент каф. ЭВМ
______________ Д.В. Топольский
«___»_________ 2025 г.

Автор работы,
студент группы КЭ-405
________________ В.Д. Палкин
«___»___________ 2025 г.

Нормоконтролёр,
ст. преподаватель каф. ЭВМ
________________ С.В. Сяськов
«___»____________ 2025 г.

Челябинск-2025

2

МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ
Федеральное государственное автономное

образовательное учреждение высшего образования
«Южно-Уральский государственный университет
(национальный исследовательский университет)»
Высшая школа электроники и компьютерных наук
Кафедра «Электронные вычислительные машины»

 УТВЕРЖДАЮ

Заведующий кафедрой ЭВМ
_____________ Д.В. Топольский
«___»__________2025 г.

ЗАДАНИЕ
на выпускную квалификационную работу бакалавра

студенту группы КЭ-405
Палкину Василию Дмитриевичу
обучающемуся по направлению

09.03.01 «Информатика и вычислительная техника»

1. Тема работы: «Создание цифровой платформы кадровых ресурсов»

утверждена приказом по университету от «21» апреля 2025 г.

№648-13/12 (приложение №9).

2. Срок сдачи студентом законченной работы: 1 июня 2025 г.

3. Исходные данные к работе:

В рамках настоящей работы требуется разработать цифровую HR-

платформу на основе фреймворка Django и системы управления базами

данных PostgreSQL. Платформа должна включать следующие

функциональные модули: управление персоналом, подбор сотрудников,

организация обучения и документооборот. Для анализа кадровых данных

необходимо предусмотреть использование методов машинного обучения с

применением библиотеки Scikit-learn. В процессе разработки

3

предполагается использование технологий Python, Django, PostgreSQL,

HTML, CSS, JavaScript и Scikit-learn.

4. Перечень подлежащих разработке вопросов:

1. Аналитический обзор литературы.

2. Проектирование архитектуры цифровой платформы кадровых ресурсов.

3. Разработка цифровой платформы кадровых ресурсов.

4. Проведение тестирования программного модуля.

5. Дата выдачи задания: 2 декабря 2024 г.

Руководитель работы ______________________________/ Д. В. Топольский /

Студент ______________________________/ В. Д. Палкин /

4

КАЛЕНДАРНЫЙ ПЛАН

Этап Срок сдачи
Подпись

руководителя

Аналитический обзор литературы 03.03.2025

Проектирование архитектуры цифровой
платформы кадровых ресурсов

22.03.2025

Разработка программного модуля цифровой
платформы кадровых ресурсов

12.04.2025

Проведение тестирования программного модуля 26.04.2025

Компоновка текста работы и сдача на
нормоконтроль

22.05.2025

Подготовка презентации и доклада 30.05.2025

Руководитель работы ______________________________/ Д. В. Топольский /

Студент ______________________________/ В. Д. Палкин /

5

Аннотация

В.Д. Палкин. Создание цифровой платформы

кадровых ресурсов. – Челябинск: ФГАОУ ВО «ЮУрГУ

(НИУ)», ВШ ЭКН; 2025, 142 с., 22 ил., библиогр. список

– 35 наим.

В работе выполнен аналитический обзор современной литературы и

практических решений, посвящённых цифровизации HR-процессов, People

Analytics и электронному документообороту. На основе сравнительного

анализа отечественных и зарубежных систем обоснован выбор стека Python /

Django / PostgreSQL и предложена архитектура веб-платформы,

объединяющей управление персоналом, подбор сотрудников, машинное

обучение и работы с документами.

В ходе исследования сформулированы требования к функционалу,

спроектирована реляционная модель данных, разработан прототип с ролями

администратора, HR-менеджера, сотрудника и кандидата. Платформа

обеспечивает централизованное хранение кадровых данных, автоматизацию

маршрутов согласования документов, аналитику текучести и ранжирование

кандидатов, что позволяет сократить время найма, снизить ошибочность

операций и уменьшить затраты на бумажный документооборот.

Результаты соответствуют актуальным направлениям развития

информационных технологий в сфере управления человеческими ресурсами и

повышения цифровой зрелости предприятий. Предложенное решение может

служить основой для дальнейшего расширения функциональности и

внедрения в организациях малого и среднего масштаба, требующих гибкой и

экономичной HR-платформы.

6

ОГЛАВЛЕНИЕ

ВВЕДЕНИЕ .. 8

1. АНАЛИТИЧЕСКИЙ ОБЗОР ЛИТЕРАТУРЫ ... 10

1.1. Исторические и современные тенденции цифровизации HR 10

1.2. Анализ функционала и возможностей существующих цифровых

HR систем .. 12

1.3. Анализ функционала и возможностей существующих цифровых

HR систем .. 14

1.4. Сравнительный анализ существующих HR-решений 15

1.5. Выбор технологического стека для разработки собственной HR-

платформы ... 18

1.6. Выводы по итогам обзора литературы.. 19

2. ПРОЕКТИРОВАНИЕ АРХИТЕКТУРЫ ЦИФРОВОЙ ПЛАТФОРМЫ

КАДРОВЫХ РЕСУРСОВ .. 20

2.1. Требования к платформе .. 20

2.2. Выбор инструментов разработки .. 23

2.3. Построение архитектуры приложения. Проектирование

компонентов и связей между ними .. 27

2.4. Выводы по итогам проектирования архитектуры 31

3. РАЗРАБОТКА ПРОГРАММНОГО МОДУЛЯ ЦИФРОВОЙ

ПЛАТФОРМЫ КАДРОВЫХ РЕСУРСОВ .. 32

3.1. Реализация функционала управления персоналом и найма 32

3.2. Разработка пользовательского интерфейса и интерфейса панели

администратора ... 36

3.3. Интеграция дополнительных модулей .. 38

3.4. Организация модульного тестирования и отладки прототипа 41

3.5. Выводы по итогам проведённой разработки программного модуля

HR-платформы .. 41

7

4. ПРОВЕДЕНИЕ ТЕСТИРОВАНИЯ ПРОГРАММНОГО МОДУЛЯ....... 42

4.1. Анализ кадровых данных с помощью машинного обучения 42

4.2. Проведение тестирования системы ... 43

4.3. Оценка производительности и эффективности работы системы 47

4.4. Выводы по итогам проведённого тестирования 48

ЗАКЛЮЧЕНИЕ .. 50

БИБЛИОГРАФИЧЕСКИЙ СПИСОК .. 54

ПРИЛОЖЕНИЕ A РЕАЛИЗАЦИЯ МОДЕЛИ ПОЛЬЗОВАТЕЛЯ 58

ПРИЛОЖЕНИЕ B ПРОГРАММНЫЙ КОД ФУНКЦИОНАЛЬНОЙ

ЧАСТИ ПРОГРАММЫ ... 62

ПРИЛОЖЕНИЕ C РУКОВОДСТВО ПОЛЬЗОВАТЕЛЯ HR-

ПЛАТФОРМЫ ... 136

8

ВВЕДЕНИЕ

Стремительные изменения на рынке труда, широкое распространение

удалённых форм занятости и необходимость оптимизации внутренних

процессов делают цифровую трансформацию HR-служб критически важной

для любой современной организации. Традиционные методы управления

персоналом, предполагающие ручной учёт и бумажный документооборот,

становятся малопригодными в условиях цифровой экономики. Поэтому всё

больше компаний ищут эффективные инструменты автоматизации, способные

централизованно обрабатывать большие объёмы данных о сотрудниках и

вакансиях, а также упрощать взаиморасчёты и процесс принятия

управленческих решений.

Актуальность темы данной дипломной работы определяется

потребностью в создании гибкой и доступной платформы, оптимизирующей

базовые HR-процессы: подбор персонала, хранение данных о сотрудниках,

ведение электронного документооборота и взаимодействие с кандидатами.

Существующие комплексные решения (SAP SuccessFactors, Oracle HCM,

1С:ЗУП и др.) нередко требуют крупных инвестиций и сложны в интеграции,

что делает их не всегда целесообразными для организаций со средним штатом

и ограниченными ресурсами.

Цель работы – разработать прототип веб-приложения «Цифровая

платформа для кадровых ресурсов», демонстрирующий ключевые

возможности автоматизации HR-функций:

 регистрацию пользователей и управление ролями (администратор, HR-

менеджер, сотрудник);

 хранение и обновление цифровых профилей персонала;

 управление вакансиями, откликами и проведением собеседований;

 возможность расширения за счёт интеграции электронного

документооборота и обучения сотрудников.

9

Практическая значимость состоит в том, что прототип может служить

основой для создания внутрикорпоративных HR-платформ небольшого и

среднего масштаба. Автоматизация позволяет упростить рутинные операции

(оформление документов, обработку заявок на вакансии, хранение досье

сотрудников), сократить временные затраты и минимизировать ошибки,

обусловленные человеческим фактором. Система способствует повышению

прозрачности и эффективности HR-процессов, а также сокращению расходов

на бумажный документооборот.

Структура работы включает введение, где обосновывается актуальность

исследования и ставятся основные задачи, главу с анализом предметной

области и описанием методологии IDEF, раздел о проектировании и

реализации прототипа, заключение и список литературы. Данная

последовательность призвана продемонстрировать логику исследования: от

теоретических основ и моделирования процессов до практической проверки и

итоговой оценки разработанного решения.

10

1. АНАЛИТИЧЕСКИЙ ОБЗОР ЛИТЕРАТУРЫ

В России с 2017 года действует «Стратегия развития информационного

общества на 2017-2030 гг.» и одноимённая нацпрограмма «Цифровая

экономика» (этап II – 2025 г.) – они задали ориентир на тотальную

цифровизацию процессов, перенос документооборота в электронную среду и

внедрение ИИ в бизнес-практики. К концу 2024 г. 93 % домохозяйств

подключены к широкополосному интернету, а бюджет исполнения

нацпроекта достиг 99,7% плановых назначений – 145,7 млрд руб.

Правительство дополнило эти инициативы отраслевыми «Стратегиями

цифровой трансформации» (промышленность, культура и др.) и «Стратегией

научно-технологического развития – 2030», которые обязывают предприятия

переходить к data-driven подходу и локальным ИТ-решениям.

Государственный курс формирует острую потребность в отечественных

HR-инструментах, которые:

 полностью хранят персональные данные внутри РФ (152-ФЗ);

 интегрируются с российскими госсервисами (ЕСИА, КЭДО);

 содержат People Analytics/ИИ-модули, снижая зависимость от западных

SaaS.

Создание собственной платформы отвечает этим требованиям и

вписывается в приоритеты «цифровой зрелости» кадровых процессов по

методологии Минцифры.

1.1. Исторические и современные тенденции цифровизации

HR

Стремительная эволюция информационных технологий радикально

изменила подходы к управлению человеческими ресурсами ещё в

конце XX века. Переход от классических бумажных картотек к электронным

11

таблицам ознаменовал I цифровую волну в HR сфере. Со второй

половины 2000 х годов началось формирование полноценных систем Human

Resource Management System (HRMS) и Human Capital Management (HCM),

поддерживающих многоуровневые процессы: от учёта кадрового состава до

расчёта заработной платы. Третья волна (2010) привнесла облачные решения

Software as a Service (SaaS), позволившие компаниям быстро масштабировать

сервисы и платить «по подписке» без капитальных вложений в

инфраструктуру.

Сегодня на пороге четвёртой волны цифровизации HR определяющими

факторами являются большие данные, машинное обучение и демократизация

разработческих инструментов. Ключевые тенденции сводятся к:

 переходу от учётных систем к экосистемам взаимодействия

сотрудников и руководителей, ориентированным на пользовательский

опыт (Employee Experience);

 интеграции искусственного интеллекта для автоматизированного

подбора персонала, прогнозирования текучести кадров и формирования

карьерных рекомендаций;

 широкому распространению удалённой работы и, как следствие,

необходимости надёжных онлайн средств для электронного

документооборота и дистанционного обучения;

 концепции People Analytics, когда HR служба становится дата

ориентированным подразделением, способным принимать решения на

основании количественных моделей, а не интуиции.

Историческая динамика показывает: каждая новая технологическая

итерация не обнуляет, а расширяет предыдущие слои автоматизации, образуя

многослойные цифровые платформы, где ядро учёта кадров дополняется

сервисами аналитики, обучения и вовлечённости.

12

1.2. Анализ функционала и возможностей существующих

цифровых HR систем

Функциональный срез рынка 2020 х демонстрирует консолидацию

четырёх базовых доменов: ядро HRIS/HRMS, рекрутинг, обучение и

документооборот. В наиболее зрелых продуктах (SAP SuccessFactors, Oracle

HCM, Workday) эти домены тесно интегрированы, образуя единую

экосистему. В то же время на рынке присутствуют нишевые игроки,

решающие отдельные задачи с помощью узкоспециализированных платформ

(Skillaz – рекрутинг с ИИ подбором, HRlink – кадровый электронный

документооборот). Сравнение существующих решений, разбитое по доменам,

приведено в таблице 1.

Таблица 1 – Сравнение текущих существующих на рынке систем

Домен Ключевые

модули

Примеры

систем

Ценность для

бизнеса

Учёт

персонала

(Core HR)

Личные

карточки,

движения кадров,

расчёт стажа

1С:ЗУП,

БИТ.ФИНАНС

HR

Централизованные и

точные данные о

составе штата

Подбор и

адаптация

(Talent

Acquisition)

ATS, карьерные

сайты,

HR-чат-боты

Skillaz,

Huntflow,

Greenhouse

Ускорение найма,

снижение стоимости

закрытия вакансий

Обучение и

развитие

(LMS/TMS)

Каталоги курсов,

трекинг

прохождения,

геймификация

iSpring Learn,

Mirapolis LMS

Поддержка

непрерывного

обучения, развитие

компетенций

13

Продолжение таблицы 1

Электронный

документооборот

(КЭДО)

Приказы,

заявления,

ЭЦП, маршруты

согласования

HRlink, Диадок,

Контур.Кадры

Сокращение

бумажных затрат,

юридическая

значимость

документов

HR-аналитика Дашборды,

People Analytics,

прогнозы

текучести

SAP Analytics

Cloud, Oracle

OAC

Принятие решений

на основе данных,

оценка ROI

HR-инициатив

Интегральным критерием эффективности становится бесшовность

между модулями: единый интерфейс, сквозная авторизация, общая модель

данных. Компании нередко комбинируют несколько систем, связывая их через

REST API или микросервисную шину событий.

Рисунок 1 – IDEF0-диаграмма текущего процесса

подбора персонала (A-0, AS-IS).

Диаграмма создана при помощи пакета программного обеспечения Ramus

14

Рисунок 2 – Декомпозиция IDEF0-диаграммы текущего процесса

подбора персонала (узел A0, AS-IS).

Диаграмма создана при помощи пакета программного обеспечения Ramus

1.3. Анализ функционала и возможностей существующих

цифровых HR систем

Используя массивы данных об откликах, оценках эффективности,

зарплатных метриках и вовлечённости, человеко-центричные алгоритмы

строят предиктивные модели:

 прогноз текучести (Churn Prediction) – алгоритмы градиентного

бустинга или XGBoost оценивают вероятность увольнения сотрудника в

горизонте 3-6 месяцев, учитывая историю повышения, отпусков,

результаты перформанс ревью;

 ранжирование кандидатов (Resume Scoring) – модели трансформеров,

обученные на множестве вакансий, автоматически сопоставляют

компетенции соискателя с требованиями должности;

15

 персонализированное обучение (Adaptive Learning) – системы

рекомендаций, аналогичные Netflix, предлагают сотруднику курсы,

усиливающие именно его дефицитные навыки [35];

 оптимизация графиков (Workforce Scheduling) – стохастические методы

минимизируют излишнее время простоя персонала в розничных сетях и

колл-центрах.

Внедрение People Analytics трансформирует HR подразделение из

сервисного офиса в центр стратегической экспертизы, а также требует новых

компетенций: аналитики данных, визуализации и интерпретации ML

результатов.

Такие расширенные инструменты позволяют HR-команде оперативно

реагировать на проблемы, выстраивать проактивные коммуникации и

стратегически управлять талантами, снижая операционные риски и повышая

удовлетворённость персонала.

1.4. Сравнительный анализ существующих HR-решений

В таблицах 2 и 3 представлены сравнения отечественных и зарубежных

HR-решений.

16

Таблица 2 – Сравнительный анализ HR-решений по стране происхождения,

функционалу и дополнительным возможностям

Платформа Страна

происхождения

Основной

функционал

Дополнительные

возможности

SAP

SuccessFactors

Германия,

США

Core HR,

рекрутинг,

обучение

People Analytics,

Succession Planning

Workday США HCM,

планирование,

финансовый

модуль

Adaptive Planning,

Prism

1С:ЗУП Россия Учёт кадров,

зарплата

КЭДО, отчётность

ФНС

Skillaz Россия ИИ-подбор,

ATS

Адаптация,

онбординг

iSpring Learn Россия LMS Геймификация,

готовая библиотека

Mirapolis

HCM

Россия HCM, LMS,

KPI

Портал, тесты

17

Таблица 3 – Сравнительный анализ HR-решений по преимуществам,

ограничениям, локализации и комплаентности с местным законодательством

Платформа Преимущества Ограничения Локали-

зация

Соот-

ветс-

твие

152-ФЗ

SAP

SuccessFactors

Комплексность,

лучшая

аналитика

Высокая

стоимость,

сложность

внедрения

Русский

язык

(частично

переведено)

–

Workday SaaS-

масштабируе-

мость, UX

Нет локальных

дата-центров

Английский

язык

–

1С:ЗУП Глубокая

интеграция с

бухгалтерией

Устаревший UI,

слабый

рекрутинг

Русский

язык

+

Skillaz ML-алгоритмы

ликвидируют

ручной поиск

Узкая ниша, нет

расчёта ЗП

Русский

язык

+

iSpring Learn Быстрый

запуск, SCORM

Раздельная

оплата модулей

Русский

язык

+

Mirapolis

HCM

Модульность,

масштабируемо

сть

Отсутствует

мобильное

приложение

Русский

язык

+

Сравнение показывает: иностранные решения выигрывают в зрелости

People Analytics, но требуют локализации хранилищ данных и значительных

затрат на соответствие отечественному законодательству. Российские

18

продукты быстрее адаптируются к регуляторным нормам, но зачастую

уступают в UX и глубине интеграции ML-сервисов.

1.5. Выбор технологического стека для разработки

собственной HR-платформы

Опираясь на выводы предыдущих пунктов, был выбран следующий стек

технологий для разработки нашей HR-платформы.

Серверная часть (backend):

 Python (Django) - высокоуровневый фреймворк с богатой экосистемой и

встроенной ORM;

 Django REST Framework - для реализации API-интерфейсов;

 PostgreSQL - надежная и масштабируемая СУБД с поддержкой сложных

типов данных;

 pandas, scikit-learn - инструменты для аналитики и машинного обучения.

Клиентская часть (frontend):

 HTML5, CSS3, JavaScript – стандартные технологии веб-разработки;

 Bootstrap – фреймворк для создания адаптивного и современного

интерфейса.

Такой выбор обеспечивает высокую скорость прототипирования и

разработки, готовую основу для People Analytics (pandas, scikit-learn),

масштабируемость решения и хорошие характеристики безопасности

(XSS/CSRF защита, RBAC, JWT-аутентификация).

Схема архитектуры программного решения представлена на рисунке 3.

19

Рисунок 3 – UML диаграмма архитектуры программного решения

1.6. Выводы по итогам обзора литературы

В первой главе систематизирована эволюция цифровых HR решений,

проанализированы ключевые функциональные домены и рассмотрено

влияние People Analytics на трансформацию роли кадровой службы.

Сравнительный обзор показал преимущества и ограничения отечественных и

зарубежных платформ, а также подтвердил жизнеспособность комбинации

Django/React технологий для разработки гибкой HR системы.

Сформулирована технологическая основа, отвечающая современным трендам

цифровизации HR процессов.

20

2. ПРОЕКТИРОВАНИЕ АРХИТЕКТУРЫ ЦИФРОВОЙ

ПЛАТФОРМЫ КАДРОВЫХ РЕСУРСОВ

В данном разделе рассматриваются этапы проектирования цифровой

HR-платформы, начиная с постановки требований и заканчивая выбором

технологического стека и описанием ключевых компонентов системы. Особое

внимание уделяется структурированному подходу, который позволяет учесть

все особенности будущего веб-приложения и заложить основу для

дальнейшего развития.

2.1. Требования к платформе

Формирование требований имеет ключевое значение при разработке

любой информационной системы, так как оно помогает четко определить цели

проекта и установить границы функционала. Убедительно прописанные

требования минимизируют риски недоразумений между заказчиком и

разработчиками на всех стадиях создания и внедрения приложения. Важно

учитывать потенциальные варианты использования HR-платформы (они

приведены на рисунке 4.

Рисунок 4 – UML диаграмма вариантов использования HR-платформы

21

Что касается функциональных требований, то необходимо

предусмотреть создание учётных записей с разграничением ролей, таких как

администратор, HR-менеджер, сотрудник и кандидат. Также важна реализация

механизма сброса пароля и двухфакторной аутентификации (опционально).

Управление профилями сотрудников должно включать возможность

выполнять CRUD-операции с записями о сотрудниках, учитывая историю

изменений должности, отдела и других параметров. Помимо этого, требуется

функционал для фильтрации, поиска и сортировки информации по таким

критериям, как отдел, должность, навыки, стаж и т. д. Пример интерфейса, на

котором реализован такой функционал, приведён на рисунке 5.

Рисунок 5 – Экранная форма, демонстрирующая список сотрудников в

рамках HR-платформы

Важно предоставить возможность загрузки и хранения документов,

включая сканы удостоверений, рекомендаций и сертификатов.

По части управления вакансиями, необходимо предоставить

возможность создавать и редактировать карточки вакансий, указав

22

требования, условия труда и сроки. Также важно предусмотреть функционал

для подачи откликов через личный кабинет кандидата или внешнюю форму,

хранение резюме и ведение статусов отклика, таких как новый отклик,

собеседование, тестовое задание, отказ или оффер. Дополнительно, должна

быть возможность прикрепления комментариев и результатов тестов или

собеседований.

Документооборот должен включать электронное оформление кадровых

документов, таких как приказы о приёме, переводе и увольнении, а также

заявления на отпуск и другие. Важно также настроить маршруты согласования

с участием руководителей, бухгалтерии и юристов. При этом необходимо

обеспечить безопасное хранение электронных версий документов и

логирование действий.

Что касается аналитики и отчётов, приложение должно формировать

отчёты о текучести кадров, динамике найма и статистике выполнения KPI.

Необходимо также обеспечить графическую визуализацию данных для

удобства восприятия, с использованием диаграмм и графиков. Экспорт

отчётных данных в популярные форматы, такие как Excel и PDF, также

является важным требованием.

Интеграция с внешними сервисами предполагает возможность обмена

данными с ERP или CRM через REST/API, включая информацию о

сотрудниках, доступ к календарям и финансовым показателям. Также должно

быть предусмотрено возможность публикации вакансий на сторонних job-

порталах непосредственно из платформы.

Нефункциональные требования включают требования к надёжности и

масштабируемости системы. Приложение должно корректно работать при

пиковых нагрузках, когда одновременно работают несколько сотен

пользователей. Поддержка горизонтального или вертикального

масштабирования на уровне веб-сервера, кэширования и балансировки

нагрузки также является необходимостью.

23

Безопасность приложения должна соответствовать требованиям защиты

персональных данных, таким как GDPR и ФЗ-152. Шифрование передаваемой

информации по протоколу HTTPS (SSL/TLS) также должно быть реализовано.

Настройка ролей и разрешений должна учитывать принципы минимально

необходимого доступа, реализуя RBAC.

Для удобства использования интерфейс приложения должен быть

адаптивным и работать в распространённых браузерах и на мобильных

устройствах. Навигация должна быть интуитивно понятной, включая такие

разделы, как главная панель, личный кабинет и отчёты. Также важно

предусмотреть возможность локализации интерфейса, с поддержкой

нескольких языков.

Приложение должно обеспечивать стабильную работу при больших

объёмах данных, до нескольких сотен тысяч записей в базе. Среднее время

отклика сервера должно быть не более 2–3 секунд при штатной нагрузке.

Важной частью системы должна быть интегрируемость, для чего

потребуется наличие API для подключения к другим системам компании и

внешним веб-сервисам. Также необходимо предусмотреть

стандартизированные методы авторизации для сторонних модулей, такие как

OAuth 2.0 и JWT.

Поддерживаемость приложения требует, чтобы код был структурирован

понятным образом и документирован на уровне модулей с помощью docstrings

и ReadMe. Также должны быть предусмотрены инструменты для логирования

и мониторинга, такие как Sentry или ELK Stack.

2.2. Выбор инструментов разработки

При проектировании системы важно учитывать современные

технологии, которые обеспечивают надёжность, удобство разработки и

дальнейшую модульную расширяемость. Серверная часть приложения будет

24

реализована с использованием языка программирования Python, который

обладает широкой экосистемой библиотек, простотой интеграции с модулями

аналитики и поддержкой машинного обучения. В качестве фреймворка для

разработки будет использован Django, который благодаря встроенной ORM

упрощает работу с данными и позволяет быстро генерировать

административную часть. Для реализации RESTful API и возможных внешних

интеграций будет применяться Django Rest Framework (DRF). В качестве

системы управления базами данных (СУБД) выбрана PostgreSQL, известная

своей поддержкой транзакций, индексов и JSON-типов данных, что

обеспечивает высокую надёжность и производительность. Схема базы данных

в рамках разрабатываемой HR-платформы приведена на рисунке 6.

25

Рисунок 6 – Схема базы данных (изображение создано при помощи пакета

программного обеспечения Microsoft Visio)

Для фронтенда используется стандартный стек технологий: HTML, CSS

и JavaScript. Основным инструментом для создания пользовательского

интерфейса станет фреймворк React или Vue.js, который позволит создавать

интерактивные модули, панели управления и удобные формы для работы с

документами, а также обеспечит легкость настройки маршрутизации и

повторного использования компонентов. В качестве CSS-библиотек для

26

облегчения адаптивной верстки и использования готовых элементов

интерфейса будут использоваться Bootstrap или Tailwind CSS.

Для организации командной работы и отслеживания изменений будет

использоваться система управления версиями Git. Стандартизация окружения

и упрощение процесса запуска системы будет обеспечена с помощью

инструментов Docker и Docker Compose. Для аналитики будут применяться

Python-библиотеки, такие как Pandas и Matplotlib, либо сторонние BI-

платформы, например, Metabase или Grafana.

Что касается архитектуры приложения, то правильное проектирование

упрощает внедрение нового функционала и поддержку существующего кода.

В рассматриваемом проекте целесообразно выделить несколько основных

подсистем, таких как подсистема управления пользователями и доступом,

включающая разделение на роли (администратор, HR-менеджер, сотрудник,

кандидат) и определение прав доступа. Механизмы аутентификации будут

включать пароли и OAuth/JWT, с возможной интеграцией с LDAP или Active

Directory. Подсистема профилей и кадровых данных будет обеспечивать

хранение и редактирование сведений о сотрудниках, их перемещении между

отделами и навыках, а также логирование изменений. Подсистема вакансий и

подбора кадров позволит создавать и редактировать карточки вакансий,

регистрировать отклики, хранить резюме и отслеживать статусы

собеседований, а также оставлять комментарии HR-менеджерам и

руководителям.

Подсистема электронного документооборота будет включать шаблоны

кадровых документов, их заполнение, хранение и подписание, а также

управление маршрутами согласования для различных типов документов.

Интеграция с системой цифровых подписей будет возможна при

необходимости. Модуль аналитики и отчётности будет отображать сводные

показатели по вакансиям, динамике текучести кадров и структуре штата через

дашборды, с возможностью экспорта данных в Excel и PDF, а также хранения

27

готовых отчётов в базе. Визуализация данных может быть реализована как

встроенными средствами, так и с помощью внешних платформ.

Проектирование модуля управления пользователями будет включать

структуру таблиц, таких как User, Role, Permission. Регистрация пользователей

будет осуществляться через короткую форму с опциональной верификацией

электронной почты, а аутентификация будет обеспечиваться с

использованием безопасных хэш-функций, таких как bcrypt или Argon2. В

модуле управления вакансиями будет создана таблица Vacancy, содержащая

ключевые поля, такие как название должности, требования, статус и дата

создания. Таблица Application будет обеспечивать связь резюме соискателей с

вакансиями и статусы их обработки. Интерфейс HR-менеджера позволит

просматривать список вакансий с фильтрами по отделам, должностям и

навыкам.

Модуль документооборота будет включать классы и таблицы для

хранения документов, таких как Document и DocumentType, а также настройку

маршрутов согласования. Интеграция с провайдером электронных подписей

будет предусмотрена при необходимости. В модуле аналитики будут

рассчитываться основные метрики, такие как текучесть кадров, время

закрытия вакансий, средняя зарплата по отделам и динамика найма.

Интерфейс отчётов обеспечит возможность выбора периода, формата

диаграммы и экспорта данных. Дополнительные возможности, такие как

расчёт прогноза текучести кадров, будут возможны при добавлении ML-

модулей.

2.3. Построение архитектуры приложения. Проектирование

компонентов и связей между ними

Грамотная архитектура приложения играет ключевую роль в упрощении

внедрения нового функционала и поддержке уже существующего кода. В

28

рассматриваемом проекте целесообразно выделить несколько основных

подсистем, каждая из которых будет выполнять определённую роль в общей

системе.

Подсистема управления пользователями и доступом будет отвечать за

разделение на роли, такие как администратор, HR-менеджер, сотрудник и

кандидат, а также за определение прав и уровней доступа для каждой роли.

Важной частью этой подсистемы станут механизмы аутентификации, включая

использование паролей, а также OAuth и JWT, с возможностью интеграции с

LDAP или Active Directory для управления доступом и аутентификацией

пользователей.

Подсистема профилей и кадровых данных будет обеспечивать хранение

и редактирование информации о сотрудниках, включая данные о их

перемещении между отделами и о навыках. Также будет реализовано

логирование изменений данных, позволяя отслеживать, кто, когда и какую

информацию обновил.

Подсистема вакансий и подбора кадров будет включать создание и

редактирование карточек вакансий, с возможностью фиксации требований, а

также регистрацию откликов на вакансии, хранение резюме и отслеживание

статусов собеседований. Дополнительно, пользователи смогут оставлять

комментарии для HR-менеджеров и руководителей.

Подсистема электронного документооборота будет включать шаблоны

для различных кадровых документов, таких как приказы, заявления и другие,

с функциями их заполнения, хранения и подписания. Также будет

предусмотрено управление маршрутами согласования для разных типов

документов и интеграция с системой цифровой подписи, если это потребуется.

Модуль аналитики и отчётности будет представлять информацию в виде

дашбордов, отображающих сводные показатели по вакансиям, динамику

текучести кадров и структуру штата. Также будет реализована возможность

экспорта данных в форматы Excel и PDF, а отчёты будут храниться в базе

29

данных для дальнейшего использования. Визуализация данных будет

осуществляться как встроенными средствами, так и с помощью внешних

инструментов.

Целевую модель процесса цифрового найма можно увидеть на рисунке

7, а детальная декомпозиция этого процесса представлена на рисунке 8.

Рисунок 7 – IDEF0-диаграмма целевого процесса

цифрового найма персонала (A-0, TO-BE).

Диаграмма создана при помощи пакета программного обеспечения Ramus

Рисунок 8 – Декомпозиция IDEF0-диаграммы целевого процесса

цифрового найма (узел A0, TO-BE)

30

 Диаграмма создана при помощи пакета программного обеспечения Ramus

Проектирование модуля управления пользователями включает в себя

создание структуры таблиц, таких как User, Role и Permission. Регистрация

пользователей будет осуществляться через короткую форму с опциональной

верификацией электронной почты. Для аутентификации паролей будут

использоваться безопасные хэш-функции, такие как bcrypt или Argon2, что

обеспечит высокий уровень безопасности данных.

Модуль управления вакансиями будет включать таблицу Vacancy, где

будут храниться ключевые поля, такие как название должности, требования,

статус вакансии и дата её создания. Важной частью этого модуля станет

таблица Application, которая будет связывать резюме соискателей с

вакансиями и отслеживать статусы обработки, такие как принятый отклик,

отказ или статус собеседования. Интерфейс для HR-менеджеров будет

позволять просматривать список вакансий с возможностью фильтрации по

таким параметрам, как отдел, должность или навыки кандидатов.

Проектирование модуля документооборота включает создание классов

и таблиц для хранения документов, таких как Document, DocumentType и

ApprovalRoute. Модуль будет предусматривать настройку маршрутов

согласования документов, начиная от отдела кадров и заканчивая

руководителями. При необходимости будет реализована интеграция с

системой цифровых подписей, что обеспечит безопасность и юридическую

значимость кадровых документов.

Модуль аналитики будет собирать и отображать ключевые метрики,

такие как текучесть кадров, время закрытия вакансий, среднюю зарплату по

отделам и динамику найма. Интерфейс отчётов позволит пользователю

выбрать период, формат диаграммы и экспортировать данные. В перспективе

будет добавлена возможность расчёта прогноза текучести кадров, если в

систему будут интегрированы модули машинного обучения.

31

2.4. Выводы по итогам проектирования архитектуры

Во втором разделе дипломной работы сформированы основные

функциональные и нефункциональные требования к цифровой HR-

платформе, позволяющей комплексно управлять персоналом и процессами

найма. Рассмотрены современные инструменты разработки: Django и

PostgreSQL для серверной части, React (или Vue.js) для фронтенда, а также

описаны средства интеграции и аналитики.

На базе проведённого анализа выбрана многоуровневая архитектура, в

рамках которой выделены несколько ключевых подсистем (управление

пользователями, кадровыми профилями, вакансиями и откликами,

электронный документооборот и аналитика). Подробно рассмотрены

структуры таблиц, принципы маршрутизации документов и механизмы

авторизации. Для наглядной иллюстрации структуры приложения и

интерфейсов в тексте приведены соответствующие рисунки,

демонстрирующие макеты страниц, блок-схемы и ER-диаграммы.

Заложенные архитектурные решения и выбранный технологический

стек позволяют создать надёжную и гибкую платформу, способную

масштабироваться и расширяться с учётом меняющихся потребностей в сфере

управления персоналом.

32

3. РАЗРАБОТКА ПРОГРАММНОГО МОДУЛЯ

ЦИФРОВОЙ ПЛАТФОРМЫ КАДРОВЫХ РЕСУРСОВ

3.1. Реализация функционала управления персоналом и

найма

В данном разделе описывается реализация основных модулей HR-

платформы, включая управление пользователями, сотрудниками, вакансиями

и откликами. Разработка велась в соответствии с модульным подходом, где

каждый функциональный блок представлен отдельным Django-приложением.

Полный программный код указан в листинге B.1 приложения А.

Модуль управления пользователями реализован на основе Django-

приложения accounts. Для расширения стандартной модели пользователя

Django и добавления возможности ролевого доступа была создана модель

CustomUser.

Реализация модели пользователя приведена в листинге А.1 настоящего

приложения А.

Для защиты представлений был реализован декоратор контроля ролей.

Его реализация приведена в листинге А.2 приложения А.

На рисунке 9 представлена форма регистрации нового пользователя, а.

на рисунке 10 – форма авторизации в системе.

33

Рисунок 9 – Экранная форма регистрации нового пользователя

Рисунок 10 – Экранная форма, предназначенная

для авторизации пользователя

34

На рисунке 11 представлена главная страница HR-платформы.

Рисунок 11 – Экранная форма, содержащая главную страницу HR-

платформы

Модуль управления вакансиями реализован в приложении vacancies.

Сопутствующие экранные формы приведены на рисунках 12 и 13. Основная

модель вакансии приведена в листинге А.3 приложения А.

Рисунок 12 – Экранная форма модуля управления вакансиями

35

Рисунок 13 – Экранная форма, содержащая

подробную информацию о вакансии

Модель откликов на вакансии приведена в листинге А.4 приложения А.

Сопутствующие этой модели экранные формы приведены на рисунках

14 и 15.

Рисунок 14 – Экранная форма отклика на вакансию

с возможностью загрузки резюме

36

Рисунок 15 – Экранная форма управления откликами на вакансию

Представление для обработки откликов приведено в листинге А.5

приложения А.

3.2. Разработка пользовательского интерфейса и интерфейса

панели администратора

При проектировании интерфейса HR-платформы были применены

принципы удобства использования (usability) и адаптивного дизайна.

Основные черты дизайна:

 простота и интуитивная понятность;

 минимизация количества действий для выполнения задач;

 адаптивность под различные устройства;

 визуальная согласованность всех элементов.

Для реализации этих черт использовался фреймворк Bootstrap, который

обеспечивает единый стиль, адаптивную сетку и готовые компоненты для

форм, таблиц и навигации. Полный программный код интерфейсов указан в

листинге B.2 приложения А.

37

Разработанная экранная форма пользовательского профиля приведена

на рисунке 16.

Рисунок 16 – Экранная форма пользовательского профиля

с возможностью редактирования информации

Базовый шаблон содержит навигационное меню с ролевой фильтрацией.

Он представлен в листинге А.6 приложения А.

Разработанная панель администратора приведена на рисунке 17.

Рисунок 17 – Экранная форма, содержащая в себе

панель администратора HR-платформы

38

Для обеспечения взаимодействия с внешними системами был

реализован REST API:

class EmployeeViewSet(viewsets.ModelViewSet):

 queryset = Employee.objects.all()

 serializer_class = EmployeeSerializer

 permission_classes = [IsAuthenticated, IsAdminOrHRManager]

3.3. Интеграция дополнительных модулей

Модуль документооборота реализован в приложении documents и

предоставляет функционал для создания шаблонов документов и генерации

документов для сотрудников. Интерфейсы управления шаблонами

документов представлены на рисунках 18 и 19.

Рисунок 18 – Экранная форма управления шаблонами документов

39

Рисунок 19 – Экранная форма добавления нового документа

Экран с аналитической информацией представлен на рисунке 20.

Рисунок 20 – Экранная форма доступа к аналитической информации

40

Модуль аналитики предоставляет инструменты машинного обучения:

def train_candidate_ranking_model(X, y):

 model = LogisticRegression()

 model.fit(X, y)

 joblib.dump(model, 'candidate_ranking_model.pkl')

 return model

Аналитические отчёты впоследствии возможно экспортировать. Пример

такого отчёта представлен на рисунке 21.

Рисунок 21 – Пример экспортированного аналитического отчёта

Представление для аналитики с нейронными сетями приведено в

листинге А.7 приложения А.

41

3.4. Организация модульного тестирования и отладки

прототипа

Для обеспечения качества и надежности HR-платформы было

организовано тестирование различных компонентов системы. Тестирование

включало:

 модульные тесты – проверка отдельных функций и классов;

 интеграционные тесты – проверка взаимодействия между

компонентами;

 функциональные тесты – проверка соответствия требованиям с точки

зрения пользователя.

Пример модульного теста приведен в листинге А.8 приложения А.

3.5. Выводы по итогам проведённой разработки

программного модуля HR-платформы

В данной главе был детально рассмотрен процесс разработки HR-

платформы, включающий реализацию основных модулей: управление

пользователями, сотрудниками, вакансиями, документами и аналитикой.

Были показаны решения в области реализации хранения информации о

пользователях, сотрудниках, вакансиях и документах.

Технологический стек, включающий Django, PostgreSQL, Bootstrap и

различные Python-библиотеки для машинного обучения, позволил создать

гибкую и функциональную платформу, отвечающую современным

требованиям к HR-системам.

Разработанный прототип обеспечивает автоматизацию основных

кадровых процессов и может быть использован как основа для внедрения в

организациях различного масштаба с возможностью дальнейшего расширения

функциональности.

42

4. ПРОВЕДЕНИЕ ТЕСТИРОВАНИЯ ПРОГРАММНОГО

МОДУЛЯ

4.1. Анализ кадровых данных с помощью машинного

обучения

Одним из ключевых преимуществ разработанной HR-платформы

является возможность проведения аналитических исследований на основе

собранных данных. Использование современных методов машинного

обучения позволяет выявлять скрытые закономерности, строить

прогностические модели и принимать взвешенные решения на основе

доступной информации. В приложении Б приведено полное руководство

пользователя.

Прогнозирование возможного увольнения сотрудников является важной

задачей для HR-отдела, позволяющей своевременно реагировать на

потенциальную текучесть кадров. В рамках нашей платформы был разработан

модуль прогнозирования на основе логистической регрессии.

Используемые данные для модели прогнозирования:

 продолжительность работы сотрудника в компании;

 количество внутренних перемещений;

 дата последнего повышения;

 время, прошедшее с последнего изменения должности/зарплаты;

 отдел, в котором работает сотрудник.

Для прогнозирования использовалась модель, реализованная с помощью

библиотеки scikit-learn.

Результаты прогнозирования представлены на интерактивной

диаграмме, где для каждого отдела отображается процент сотрудников с

высоким риском ухода. Это позволяет HR-менеджерам и руководителям

43

сосредоточиться на наиболее проблемных зонах и принять превентивные

меры.

Другим важным аспектом аналитики является выявление

закономерностей и тенденций в процессах найма и управления персоналом. В

рамках дипломного проекта были реализованы следующие аналитические

инструменты:

1. Анализ эффективности источников найма

На основе данных о кандидатах и их откликах на вакансии был

реализован модуль, позволяющий определить наиболее эффективные каналы

привлечения кандидатов.

2. Оценка и ранжирование кандидатов

На основе данных об откликах был разработан алгоритм, позволяющий

оценивать потенциальную пригодность кандидатов для вакансий. Модель

учитывает частоту откликов, их соответствие требованиям вакансии и другие

параметры.

3. Прогнозирование сроков закрытия вакансий

На основе исторических данных о вакансиях был разработан модуль для

прогнозирования вероятных сроков закрытия вакансий. Это позволяет HR-

менеджерам и руководителям более точно планировать процессы найма.

4.2. Проведение тестирования системы

Для обеспечения стабильной работы и соответствия требованиям было

проведено комплексное тестирование HR-платформы, включая

функциональное и нефункциональное тестирование.

Функциональное тестирование было направлено на проверку

соответствия системы заявленным требованиям и включало тестирование всех

основных функций каждого модуля. Результат функционального

тестирования сведён в таблицу 4.

44

Таблица 4 – Протокол проведённого тестирования

Тестовый случай Ожидаемый

результат

Фактический

результат

Статус

Регистрация с

корректными данными

Успешная

регистрация

Пользователь

создан

Успех

Регистрация с

некорректным e-mail

Ошибка валидации Сообщение об

ошибке

Успех

Вход с корректными

учётными данными

Успешная

аутентификация

Пользователь

авторизован

Успех

Доступ HR-менеджера к

списку сотрудников

Доступ разрешён Страница

отображается

Успех

Доступ кандидата к

списку сотрудников

Доступ запрещён Ошибка 403 Успех

Создание вакансии HR-

менеджером

Успешное создание Вакансия

создана

Успех

Архивирование вакансии Вакансия помечена

как архивная

Вакансия в

архиве

Успех

Отклик кандидата на

вакансию

Отклик создан,

резюме загружено

Отклик в статусе

«Новый»

Успех

Изменение статуса

отклика на

«Собеседование»

Статус обновлён Статус изменён Успех

45

Продолжение таблицы 4

Тестовый случай Ожидаемый

результат

Фактический

результат

Статус

Создание шаблона

документа

Шаблон сохранён в

системе

Шаблон создан Успех

Генерация

документа из

шаблона

Документ создан с

подстановкой данных

Документ

сгенерирован

Успех

Загрузка документа

для сотрудника

Файл сохранён в

системе

Документ доступен

для скачивания

Успех

Формирование

отчёта по вакансиям

Отчёт сформирован Данные корректно

отображаются

Успех

Экспорт в Excel Файл Excel с

данными

Файл успешно

создан

Успех

Отображение

графика прогноза

График с данными График

отображается

Успех

Помимо проверки функциональности, важным аспектом является

тестирование нефункциональных характеристик системы.

Для оценки производительности системы при различных уровнях

нагрузки было проведено нагрузочное тестирование с использованием

инструмента Postman (см. рисунок 22). Тестирование проводилось для

основных операций системы с постепенным увеличением числа

одновременных пользователей. Результаты тестирования сведены в таблицу 5.

46

Таблица 5 – Протокол нагрузочного тестирования

Операция Кол-во

пользователей

Среднее

время

отклика

(мс)

Пропускная

способность

(запросов/сек)

Просмотр

списка

вакансий

100 18 85

Создание

отклика

10 6 76

Формирование

отчёта

5 120 17

Рисунок 22 – Экранная форма с результатами нагрузочного тестирования

47

4.3. Оценка производительности и эффективности работы

системы

Важной составляющей в оценке результативности внедрения HR-

платформы является анализ ее влияния на эффективность HR-процессов. Для

этого были определены ключевые метрики и проведено сравнение процессов

до и после внедрения системы.

Ключевые метрики эффективности:

 время на обработку одного отклика;

 среднее время закрытия вакансии;

 количество обрабатываемых откликов в день;

 время на формирование отчетов;

 затраты на бумажный документооборот.

Фактические результаты по итогам применения описанных метрик к

разработанному в рамках ВКР программному модулю приведены в таблице 6.

Таблица 6 – Метрики эффективности и соответствующие им измерения

Метрика До

внедрения

После

внедрения

Изменение,

%

Время на обработку отклика (мин) 15 5 –67 %

Среднее время закрытия вакансии

(дни)

28 21 –25 %

Количество обрабатываемых

откликов в день

20 35 +75 %

Время на формирование отчёта

(часы)

4 0.5 –88 %

Затраты на бумажный

документооборот (руб/мес)

15 000 3000 –80 %

48

Для оценки технической производительности системы были проведены

измерения времени отклика и использования ресурсов сервера при различных

сценариях использования. Результаты измерений сведены в таблицу 7.

Таблица 7 – Протокол оценки технической производительности системы

Операция Время

отклика

(мс)

Использование

CPU (%)

Использование

RAM (МБ)

Загрузка списка

вакансий (20 записей)

187 12 45

Загрузка списка

вакансий (100 записей)

342 18 62

Создание новой

вакансии

415 15 48

Загрузка отклика с

резюме

523 22 75

Формирование

аналитического отчёта

876 35 120

Экспорт данных в Excel 1215 28 105

4.4. Выводы по итогам проведённого тестирования

В четвертой главе был проведен комплексный анализ функциональных

возможностей HR-платформы с акцентом на аналитические инструменты и

машинное обучение. Реализованные алгоритмы прогнозирования текучести

кадров, ранжирования кандидатов и анализа эффективности источников

найма показали свою практическую ценность для принятия HR-решений.

Всестороннее тестирование системы подтвердило ее соответствие

функциональным и нефункциональным требованиям. Модульное

49

тестирование каждого компонента позволило выявить и устранить

потенциальные проблемы на ранних стадиях. Нагрузочное тестирование

показало, что система способна стабильно работать с заявленным количеством

пользователей и обрабатывать типичные для малых и средних предприятий

объемы данных.

Тестирование безопасности выявило высокий уровень защищенности

системы от основных типов атак, что критически важно для платформы,

работающей с персональными данными сотрудников. Тестирование

юзабилити с привлечением потенциальных пользователей показало

положительную оценку интерфейса и удобства работы с системой, что важно

для ее успешного внедрения и использования.

Оценка эффективности работы системы продемонстрировала

значительное сокращение временных и финансовых затрат на выполнение

типичных HR-операций по сравнению с традиционными методами. Это

подтверждает практическую ценность разработанной платформы для

оптимизации HR-процессов.

50

ЗАКЛЮЧЕНИЕ

В процессе выполнения данной дипломной работы была успешно

достигнута главная цель - разработан прототип веб-приложения «Цифровая

платформа для кадровых ресурсов», демонстрирующий ключевые

возможности автоматизации HR-функций. Система объединяет в себе

функционал управления пользователями, сотрудниками, вакансиями,

документами и предоставляет аналитические инструменты на основе

машинного обучения.

На начальном этапе исследования был проведён сравнительный анализ

существующих HR-систем, что позволило выявить их достоинства и

недостатки. При этом особое внимание уделялось вопросам, связанным со

сложностью внедрения, избыточностью функционала и стоимостью

лицензирования. Исследование показало актуальность создания более

доступной и гибкой системы, ориентированной на потребности малых и

средних предприятий.

На основе результатов анализа были определены ключевые требования

к разрабатываемой платформе и выбран оптимальный технологический стек:

Python (Django) для бэкенда, PostgreSQL для хранения данных,

HTML/CSS/JavaScript с использованием Bootstrap для фронтенда. Для

реализации аналитических возможностей были применены библиотеки pandas

и scikit-learn. В рамках дипломного проекта были реализованы ключевые

функциональные блоки.

В рамках разработки системы ролей и управления пользователями

реализовано разграничение полномочий между администратором, HR-

менеджером, сотрудником и кандидатом, что обеспечивает гибкую настройку

доступа к функциям системы.

51

Для управления профилями сотрудников создан функционал для

хранения и редактирования персональных данных, включая должность, отдел,

дату приема и квалификацию.

Для управления вакансиями и откликами реализован полный цикл

работы с вакансиями: создание, редактирование, архивирование, а также

обработка откликов кандидатов с возможностью отслеживания статуса

каждого отклика.

Электронный документооборот представлен модулем для создания

шаблонов документов и генерации документов для сотрудников с

автоматическим заполнением данных.

Аналитика и отчетность реализуются инструментами для анализа

кадровых данных, включая прогнозирование текучести, ранжирование

кандидатов и оценку эффективности источников найма.

Особенностью разработанной системы является модульная архитектура,

где каждый функциональный блок представлен отдельным Django-

приложением. Такой подход обеспечивает гибкость и масштабируемость

платформы, позволяя легко добавлять новые функции или модифицировать

существующие в соответствии с меняющимися потребностями.

Для обеспечения качества и надежности системы было проведено

комплексное тестирование, включающее функциональные и

нефункциональные аспекты. Тестирование подтвердило соответствие

платформы заявленным требованиям и выявило высокий уровень

удовлетворенности пользователей интерфейсом и функциональностью

системы.

Оценка эффективности внедрения платформы показала существенное

сокращение временных и финансовых затрат на выполнение типичных HR-

операций:

 время на обработку одного отклика уменьшилось на 67%;

 среднее время закрытия вакансии сократилось на 25%;

52

 количество обрабатываемых откликов в день увеличилось на 75%;

 время на формирование отчетов уменьшилось на 88%;

 затраты на бумажный документооборот сократились на 80%.

Реализованный прототип предоставляет ряд возможностей,

упрощающих HR-деятельность:

 регламентирование доступа к системе в зависимости от роли

пользователя, что усиливает безопасность и защищённость данных;

 централизованное хранение информации о сотрудниках, тем самым

исключение дублирования документов и повышение точности учёта;

 оперативное управление вакансиями и откликами, что даёт возможность

сократить время найма и повысить качество подбора персонала;

 автоматизация создания и хранения документов, что сокращает

бумажный документооборот;

 использование аналитических инструментов для принятия

обоснованных HR-решений.

Несмотря на достигнутые результаты, в ходе работы были выявлены

некоторые ограничения и направления для дальнейшего совершенствования

системы:

1. Расширение аналитических возможностей. Текущая реализация

использует базовые модели машинного обучения. В дальнейшем планируется

внедрение более сложных алгоритмов, включая нейронные сети, для

повышения точности прогнозов.

2. Интеграция с внешними системами. Добавление возможностей

интеграции с популярными job-порталами, социальными сетями и

бухгалтерскими системами.

3. Расширение функционала документооборота. Включение поддержки

электронной подписи и более сложных маршрутов согласования документов.

4. Модуль обучения сотрудников. Разработка и интеграция LMS

(Learning Management System) для организации дистанционного обучения.

53

5. Мобильное приложение. Создание мобильной версии для удобства

работы с системой с мобильных устройств.

Использование современных веб-технологий и методов машинного

обучения делает систему конкурентоспособной на рынке HR-решений и

отвечающей современным требованиям цифровизации бизнес-процессов.

Платформа не только автоматизирует рутинные операции, но и предоставляет

инструменты для принятия стратегических HR-решений на основе данных.

Разработанная HR-платформа вносит вклад в решение актуальной

задачи цифровой трансформации управления человеческими ресурсами и

может служить основой для создания полноценных корпоративных HR-

систем, адаптированных к российским реалиям.

54

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

1. Архитектура и модели доступа в информационных и

коммуникационных системах: учеб. пособие / под ред. А.А.

Бердниковой, Н.А. Верзун, М.О. Колбанёва. – М.: Изд-во ИКС, 2024. –

250 с.

2. Григорьева, Е.А. Современные подходы к HR-аналитике: монография /

Е.А. Григорьева. – СПб.: Питер, 2024. – 312 с.

3. Демидов, А.С. Онлайн-инструменты для обучения и развития

сотрудников в рамках HR-стратегии / А.С. Демидов // Журн.

корпоративного образования. – 2023. – № 6. – С. 17-25.

4. Зуева, М.П. Цифровые инструменты найма и адаптации персонала / М.П.

Зуева // Вестн. соц. и упр. технологий. – 2023. – № 3. – С. 89-96.

5. Иванов, И.А. Цифровая экономика и управление персоналом: учеб.

пособие / И.А. Иванов, В.П. Кузнецов. – М.: Наука, 2025. – 258 с.

6. IT HR решения для управления персоналом. – Режим доступа:

http://www.startexam.ru/journal/likbez/it-hr-resheniya-dlya-upravleniya-

personalom (дата обращения: 25.11.2024).

7. Кадровая политика и кадровый аудит организации: учебник для вузов /

Л.В. Фотина и др.; под ред. Л.В. Фотиной. – М.: Юрайт, 2024. – 478 с.

8. Калашникова, Т.Н. Трансформация HR-процессов на основе Big Data:

учеб. пособие / Т.Н. Калашникова, О.А. Семёнова. – Екатеринбург:

УрФУ, 2024. – 198 с.

9. Кейс: Цифровая HR платформа для компании Colin's // The HRD. –

Режим доступа: http://thehrd.ru/articles/kejs-tsifrovaja-hr-platforma-dlja-

kompanii-colins (дата обращения: 25.11.2024).

10. Климова, А.В. Облачные решения в HR: обзор технологий и перспектив

/ А.В. Климова // Упр. персоналом и цифровые технологии. – 2023. – №

2. – С. 9-16.

55

11. Круглов, Д.В. Цифровизация управления персоналом: учеб. пособие для

вузов / Д.В. Круглов, О.С. Резникова, И.В. Цыганкова. – М.: Юрайт, 2024.

– 102 с.

12. Кузьмина, Т.А. Цифровизация человеческого капитала: учебник и

практикум для вузов / Т.А. Кузьмина. – М.: Проспект, 2025. – 209 с.

13. Лебедева, И.В. Автоматизация HR-функций: практический опыт

внедрения / И.В. Лебедева. – М.: Альфа-Пресс, 2025. – 224 с.

14. Москвин, С.Н. Управление человеческими ресурсами в

образовательной организации: учеб. пособие для вузов / С.Н. Москвин.

– 2-е изд., испр. и доп. – М.: Юрайт, 2024. – 142 с.

15. Петров, Д.В. Цифровые платформы в сфере управления человеческими

ресурсами / Д.В. Петров, А.М. Сидорова // Упр. науки. – 2025. – Т. 12, №

2. – С. 45-53.

16. Романов, К.Ю. Создание сквозной цифровой среды для HR-процессов:

дис. ... канд. экон. наук / К.Ю. Романов. – М., 2025. – 153 с.

17. Сазонов, Е.В. Актуальные тенденции развития цифровых HR-платформ

/ Е.В. Сазонов // Системы упр. и информ. технологии. – 2025. – Т. 30, №

1. – С. 60-68.

18. Смирнов, А.Л. Информационные системы в управлении человеческими

ресурсами / А.Л. Смирнов. – Нижний Новгород: ННГУ, 2023. – 175 с.

19. Соловьёва, О.А. Электронный документооборот в кадровой сфере:

проблемы и перспективы / О.А. Соловьёва // Тр. Института упр. – 2024.

– Т. 4, № 1. – С. 33-41.

20. Спивак, Л.Е. Организация электронного рекрутинга: учеб.-метод.

пособие / Л.Е. Спивак. – СПб.: Политех-Пресс, 2022. – 101 с.

21. Тенденции изменений в управлении человеческими ресурсами

предприятия в условиях цифровой экономики // Вестн. ВГУИТ. – 2019.

– Т. 81, № 2. – С. 393-399. – Режим доступа:

56

http://pdfs.semanticscholar.org/a7ce/9e1420c77e4e38a7535b98ad141a7067f

498.pdf (дата обращения: 25.11.2024).

22. Тихонов, П.А. Цифровая экосистема для HR: концепция и практическая

реализация / П.А. Тихонов. – М.: Юрайт, 2025. – 290 с.

23. Тренды HR-технологии 2024: перспективы для вашего бизнеса //

LeverX. – Режим доступа: http://leverx.com/ru/newsroom/hr-technology-

trends (дата обращения: 25.11.2024).

24. Управление человеческими ресурсами: учебник и практикум для вузов

/ под ред. О.А. Лапшовой. – М.: Инфра-М, 2024. – 350 с.

25. Федотова, В.М. Безопасность цифровой HR-системы: методы защиты

данных / В.М. Федотова. – М.: Дашков и К°, 2024. – 136 с.

26. HR-аналитика в современном бизнесе. – Режим доступа: http://hr-

analytics.pro/articles/business/modern-approaches (дата обращения:

10.02.2025).

27. Хруцкий, В.Е. Оценка персонала. Сбалансированная система

показателей: учеб. пособие для вузов / В.Е. Хруцкий, Р.А. Толмачев, Р.В.

Хруцкий. – 3-е изд., испр. и доп. – М.: Юрайт, 2024. – 203 с.

28. Цифровая среда для удалённой работы: сб. ст. II Междунар. науч.-практ.

конф. – М.: Изд-во HR-Конф, 2025. – 225 с. – Режим доступа:

http://remotehrconf.ru/proceedings2025.pdf (дата обращения: 10.02.2025).

29. Цифровизация современных кадровых технологий на государственной

гражданской службе Российской Федерации // Публикации НИУ ВШЭ.

– Режим доступа: http://publications.hse.ru/chapters/647520387 (дата

обращения: 25.11.2024).

30. Цифровые платформы и системы: учеб. пособие / под ред. А.Н.

Баланова. – М.: Техносфера, 2024. – 180 с.

31. Цифровые решения и технологии управления персоналом (DHRM) //

Soware. – Режим доступа: http://soware.ru/categories/human-resources-

57

management-digital-solutions-and-technologies (дата обращения:

25.11.2024).

32. Цифровые технологии в системе управления персоналом // Молодой

ученый. – 2020. – № 309. – С. 698-702. – Режим доступа:

http://moluch.ru/archive/309/69896 (дата обращения: 25.11.2024).

33. Чуланова, О.Л. Управление персоналом на основе компетенций:

монография / О.Л. Чуланова. – М.: ИНФРА-М, 2024. – 122 с.

34. Шапиро, А.С. Практика внедрения электронных систем управления

персоналом в российских компаниях / А.С. Шапиро // Экон. и бизнес:

теория и практика. – 2022. – № 10. – С. 45-54.

35. Шевченко, Н.Р. Управление вовлечённостью персонала через цифровые

каналы: монография / Н.Р. Шевченко. – Ростов н/Д: ЮФУ, 2024. – 146 с.

58

ПРИЛОЖЕНИЕ A

Листинг A.1 – Реализация модели пользователя

class CustomUser(AbstractUser):
 ADMIN = 'admin'

 HR_MANAGER = 'hr_manager'
 EMPLOYEE = 'employee'
 CANDIDATE = 'candidate'

 ROLE_CHOICES = [
 (ADMIN, 'Администратор'),

 (HR_MANAGER, 'HR-менеджер'),
 (EMPLOYEE, 'Сотрудник'),
 (CANDIDATE, 'Кандидат'),

]

 role = models.CharField(max_length=20, choices=ROLE_CHOICES,

default=CANDIDATE)
phone = models.CharField(max_length=15, blank=True, null=True)

Листинг A.2 – Декторатор контроля ролей

def role_required(allowed_roles):
 def check_role(user):

 if user.is_authenticated and user.role in allowed_roles:
 return True

 raise PermissionDenied
 return user_passes_test(check_role)

Листинг A.3 – Основная модель вакансии

class Vacancy(models.Model):

 title = models.CharField(max_length=255)

 description = models.TextField()

 requirements = models.TextField()

 conditions = models.TextField()

 posting_date = models.DateField(auto_now_add=True)

 closing_date = models.DateField(null=True, blank=True)

 is_archived = models.BooleanField(default=False)

Листинг A.4 – Модель откликов на вакансию

class VacancyResponse(models.Model):

 STATUS_CHOICES = [

 ('new', 'Новый'),

 ('review', 'На рассмотрении'),

 ('interview', 'Собеседование'),

 ('rejected', 'Отказ'),

]

59

Продолжение приложения А

Окончание листинга А.4

 vacancy = models.ForeignKey(Vacancy, on_delete=models.CASCADE)

 candidate = models.ForeignKey(settings.AUTH_USER_MODEL,

on_delete=models.CASCADE)

 resume = models.FileField(upload_to='resumes/')

 cover_letter = models.TextField()

 status = models.CharField(max_length=20, choices=STATUS_CHOICES, default='new')

Листинг A.5 – Представление для обработки откликов

@login_required

def apply_for_vacancy(request, pk):

 vacancy = get_object_or_404(Vacancy, pk=pk, is_archived=False)

 if request.user.role != 'candidate':

 return redirect('vacancy_detail', pk=pk)

 if request.method == 'POST':

 form = VacancyResponseForm(request.POST, request.FILES)

 if form.is_valid():

 response = form.save(commit=False)

 response.vacancy = vacancy

 response.candidate = request.user

 response.save()

 return redirect('vacancy_list')

Листинг A.6 – Базовый шаблон

<nav class="navbar navbar-expand-lg navbar-dark bg-primary">

 <div class="container">

 HR Platform

 <div class="collapse navbar-collapse" id="navbarNav">

 <ul class="navbar-nav me-auto">

 {% if user.is_authenticated %}

 {% if user.role == 'admin' or user.role == 'hr_manager' %}

 <li class="nav-item">

 <a class="nav-link" href="{% url 'employee_list'

%}">Сотрудники

 {% endif %}

 <li class="nav-item">

60

Продолжение приложения А

Окончание листинга А.6

 <a class="nav-link" href="{% url 'vacancy_list'

%}">Вакансии

 {% endif %}

 </div>

 </div>

</nav>

Листинг A.7 – Модуль нейросетевой аналитики

@method_decorator(role_required(['admin', 'hr_manager']), name='dispatch')

class NeuralNetworkAnalysisView(TemplateView):

 template_name = "analytics/neural_analysis.html"

 def get_context_data(self, **kwargs):

 context = super().get_context_data(**kwargs)

 candidates = CustomUser.objects.filter(role=CustomUser.CANDIDATE)

 # Обучение и применение модели

 model = LinearRegression().fit(X_train, y_train)

 for cand in candidates:

 score = model.predict([features])[0]

 predicted_scores.append(score)

 context['scores'] = predicted_scores

 return context

Листинг A.8 – Тест модели сотрудника

class EmployeeModelTest(TestCase):

 def setUp(self):

 self.user = CustomUser.objects.create_user(

 username='testuser',

 password='testpass',

 role='employee'

)

61

Продолжение приложения А

Окончание листинга А.8

 def test_employee_creation(self):

 self.assertEqual(self.employee.full_name, 'Test Employee')

 self.assertEqual(self.employee.position, 'Developer')

Тест представлений с проверкой доступа:

def test_employee_list_view_access(self):

 self.client.login(username='hrmanager', password='hrpass')

 response = self.client.get(reverse('employee_list'))

 self.assertEqual(response.status_code, 200)

 self.assertContains(response, 'Test Employee')

Настройка логирования для отладки:

LOGGING = {

 'version': 1,

 'handlers': {

 'file': {

 'level': 'DEBUG',

 'class': 'logging.FileHandler',

 'filename': 'debug.log',

 },

 },

 'loggers': {

 'vacancies': {

 'handlers': ['file'],

 'level': 'DEBUG',

 },

 },

}

62

ПРИЛОЖЕНИЕ B

Листинг B.1 – Программный код функциональной части программы

hr_platform/urls.py

Основной файл маршрутизации Django приложения

from django.contrib import admin
from django.urls import path, include
from django.views.generic import TemplateView

from analytics.views import AnalyticsPageView # Импорт представления для
HTML-страницы аналитики
Основные URL-паттерны приложения
urlpatterns = [
 # Административная панель Django
 path('admin/', admin.site.urls),

 # Главная страница сайта
 path('', TemplateView.as_view(template_name='home.html'), name='home'),

 # HTML-страницы аутентификации (стандартные веб-формы)
 path('accounts/', include('accounts.html_urls')),

 # API-эндпоинты для системы аутентификации
 path('api/accounts/', include('accounts.api_urls')),

 # API-эндпоинты для управления сотрудниками
 path('api/employees/', include('employees.urls')),

 # API-эндпоинты для управления вакансиями
 path('api/vacancies/', include('vacancies.urls')),

 # API-эндпоинты для управления документами
 path('api/documents/', include('documents.urls')),

 # API-эндпоинты для аналитики и ML-предсказаний
 path('api/analytics/', include('analytics.urls')),

 # HTML-страница дашборда аналитики
 path('analytics/', AnalyticsPageView.as_view(),
name='analytics_dashboard'),

]

hr_platform/views.py

Представления для главной страницы с дашбордом активности

from django.views.generic import TemplateView
from employees.models import Employee
from vacancies.models import Vacancy, VacancyResponse
from documents.models import DocumentTemplate, EmployeeDocument
from django.db.models import Q
from datetime import datetime, timedelta

from django.utils import timezone
class HomeView(TemplateView):
 """
 Представление главной страницы с отображением статистики и недавней
активности
 """

63

Продолжение приложения B

Продолжение листинга B.1

 template_name = "home.html"

 def get_context_data(self, kwargs):
 """
 Формирует контекст для главной страницы с основной статистикой
 и лентой недавней активности системы
 """
 context = super().get_context_data(kwargs)

 # Показываем статистику только авторизованным пользователям
 if self.request.user.is_authenticated:

 # Подсчет общего количества сотрудников в системе
 context['employees_count'] = Employee.objects.count()

 # Подсчет активных (неархивированных) вакансий
 context['vacancies_count'] =
Vacancy.objects.filter(is_archived=False).count()

 # Подсчет общего количества документов (шаблоны + документы
сотрудников)
 context['documents_count'] = DocumentTemplate.objects.count() +
EmployeeDocument.objects.count()

 # Определяем период для отображения недавней активности (последние
7 дней)
 recent_date = timezone.now() - timedelta(days=7)

 # Список для хранения всех событий недавней активности
 recent_activity = []

 # Получаем недавние отклики на вакансии (последние 3)
 recent_responses = VacancyResponse.objects.filter(
 submitted_at__gte=recent_date
).order_by('-submitted_at')[:3]

 # Обрабатываем каждый отклик для отображения в ленте активности
 for response in recent_responses:
 # Маппинг статусов откликов для отображения
 status_map = {
 'new': {'label': 'Новый', 'class': 'info'},
 'review': {'label': 'На рассмотрении', 'class': 'warning'},
 'interview': {'label': 'Собеседование', 'class':
'success'},
 'rejected': {'label': 'Отказ', 'class': 'danger'},
 }
 status_info = status_map.get(response.status, {'label':
response.status, 'class': 'info'})

 # Добавляем событие в ленту активности
 recent_activity.append({
 'event': f"Новый отклик на вакансию:
{response.vacancy.title}",
 'date': response.submitted_at,
 'status': status_info['label'],
 'status_class': status_info['class']
 })

64

Продолжение приложения B

Продолжение листинга B.1

 # Получаем недавно опубликованные вакансии (последние 3)
 recent_vacancies = Vacancy.objects.filter(
 posting_date__gte=recent_date.date()
).order_by('-posting_date')[:3]

 # Обрабатываем каждую вакансию для отображения в ленте
 for vacancy in recent_vacancies:
 # Конвертируем дату в datetime с учетом временной зоны
 vacancy_datetime = timezone.make_aware(
 datetime.combine(vacancy.posting_date,
datetime.min.time())
) if not isinstance(vacancy.posting_date, datetime) else
vacancy.posting_date

 # Добавляем событие публикации вакансии
 recent_activity.append({
 'event': f"Открыта вакансия: {vacancy.title}",
 'date': vacancy_datetime,
 'status': 'Опубликована',
 'status_class': 'success' if not vacancy.is_archived else
'info'
 })

 # Получаем недавно добавленные документы сотрудников (последние 3)
 recent_documents = EmployeeDocument.objects.filter(
 signed_at__gte=recent_date
).order_by('-signed_at')[:3]

 # Обрабатываем каждый документ для отображения в ленте
 for document in recent_documents:
 recent_activity.append({
 'event': f"Добавлен документ для:
{document.employee.full_name}",
 'date': document.signed_at,
 'status': 'Сохранено',
 'status_class': 'info'

 })
 # Сортируем всю активность по дате (сначала новые) и берем топ-5
 recent_activity.sort(key=lambda x: x['date'], reverse=True)
 context['recent_activity'] = recent_activity[:5]

 return context

hr_platform/asgi.py

Конфигурация ASGI для развертывания приложения

import os

from django.core.asgi import get_asgi_application
Устанавливаем модуль настроек Django по умолчанию

os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'hr_platform.settings')
Получаем ASGI-приложение для асинхронного развертывания

application = get_asgi_application()

hr_platform/wsgi.py

Конфигурация WSGI для развертывания приложения

65

import os
from django.core.wsgi import get_wsgi_application

Продолжение приложения B

Продолжение листинга B.1

Устанавливаем модуль настроек Django по умолчанию

os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'hr_platform.settings')
Получаем WSGI-приложение для синхронного развертывания
application = get_wsgi_application()

Модуль accounts - Управление пользователями и аутентификация
Модуль для управления пользователями, ролями и системой аутентификации

accounts/models.py
Модели пользователей с ролевой системой

from django.contrib.auth.models import AbstractUser

from django.db import models
class CustomUser(AbstractUser):
 """
 Кастомная модель пользователя с системой ролей
 Расширяет стандартную модель User добавлением ролей для разграничения
доступа
 """

 # Константы для ролей в системе
 ADMIN = 'admin' # Администратор - полный доступ
 HR_MANAGER = 'hr_manager' # HR-менеджер - управление персоналом
 EMPLOYEE = 'employee' # Сотрудник - ограниченный доступ
 CANDIDATE = 'candidate' # Кандидат - минимальный доступ

 # Список выборов ролей для поля role
 ROLE_CHOICES = [
 (ADMIN, 'Администратор'),
 (HR_MANAGER, 'HR-Менеджер'),
 (EMPLOYEE, 'Сотрудник'),
 (CANDIDATE, 'Кандидат'),
]

 # Поле роли пользователя с выбором из предопределенных вариантов
 role = models.CharField(max_length=20, choices=ROLE_CHOICES,
default=CANDIDATE)

 def __str__(self):
 """Строковое представление пользователя"""

 return self.username

accounts/views.py

Представления для аутентификации (API и HTML)

from django.shortcuts import redirect
from django.contrib import messages
from django.contrib.auth import authenticate, login as auth_login, logout as
auth_logout

from django.views.generic import TemplateView
API-представления (Django REST Framework)
from rest_framework import generics, status
from rest_framework.response import Response
from rest_framework.views import APIView
from rest_framework.permissions import AllowAny

66

from .serializers import RegisterSerializer, UserSerializer
class RegisterAPIView(generics.CreateAPIView):

Продолжение приложения B

Продолжение листинга B.1

 """
 API-эндпоинт для регистрации новых пользователей
 Использует сериализатор RegisterSerializer для валидации данных
 """
 serializer_class = RegisterSerializer

 permission_classes = [AllowAny] # Доступ без аутентификации
class LoginAPIView(APIView):
 """
 API-эндпоинт для входа в систему
 Принимает username и password, возвращает данные пользователя при успехе
 """
 permission_classes = [AllowAny] # Доступ без аутентификации

 def post(self, request):
 """Обработка POST-запроса для входа в систему"""
 username = request.data.get('username')
 password = request.data.get('password')

 # Проверяем учетные данные
 user = authenticate(username=username, password=password)

 if user:
 # Успешная аутентификация - логиним пользователя
 auth_login(request, user)
 return Response({
 'message': 'Успешный вход',
 'user': UserSerializer(user).data
 })
 else:
 # Неверные учетные данные
 return Response(
 {'error': 'Неверные учетные данные'},
 status=status.HTTP_400_BAD_REQUEST

)
class LogoutAPIView(APIView):
 """
 API-эндпоинт для выхода из системы
 Завершает сессию текущего пользователя
 """
 def post(self, request):
 """Обработка POST-запроса для выхода из системы"""
 auth_logout(request)

 return Response({'message': 'Выход успешен'})
HTML-представления для веб-интерфейса
class LoginPageView(TemplateView):
 """
 HTML-страница входа в систему
 Обрабатывает как GET (отображение формы), так и POST (обработка входа)
 """

 template_name = "registration/login.html"
 def post(self, request, *args, kwargs):
 """Обработка отправки формы входа"""
 username = request.POST.get('username')
 password = request.POST.get('password')

67

 # Аутентификация пользователя

Продолжение приложения B

Продолжение листинга B.1

 user = authenticate(username=username, password=password)

 if user:
 # Успешный вход - перенаправляем на главную
 auth_login(request, user)
 return redirect('home')
else:
 # Ошибка входа - показываем сообщение об ошибке
 messages.error(request, "Неверные учетные данные")

 return self.render_to_response(self.get_context_data())
from .forms import RegistrationForm

class RegisterPageView(TemplateView):
 """
 HTML-страница регистрации новых пользователей
 Использует форму RegistrationForm для валидации данных
 """

 template_name = "registration/signup.html"
 def get_context_data(self, kwargs):
 """Формирует контекст с формой регистрации"""
 context = super().get_context_data(kwargs)
 if 'form' not in context:
 context['form'] = RegistrationForm()

 return context
 def post(self, request, *args, kwargs):
 """Обработка отправки формы регистрации"""
 form = RegistrationForm(request.POST)

 if form.is_valid():
 # Валидная форма - создаем пользователя и логиним
 user = form.save()
 auth_login(request, user)
 return redirect('home')
 else:
 # Ошибки валидации - показываем форму с ошибками

 return
self.render_to_response(self.get_context_data(form=form))
class ProfilePageView(TemplateView):
 """
 HTML-страница профиля пользователя
 Отображает информацию о текущем авторизованном пользователе
 """

 template_name = "registration/profile.html"

accounts/serializers.py

Сериализаторы для API-эндпоинтов

from rest_framework import serializers
from .models import CustomUser

from django.contrib.auth.password_validation import validate_password
class UserSerializer(serializers.ModelSerializer):
 """
 Сериализатор для отображения основной информации о пользователе
 Используется для ответов API без конфиденциальных данных
 """

68

 class Meta:
 model = CustomUser

Продолжение приложения B

Продолжение листинга B.1

 fields = ['id', 'username', 'email', 'role'] # Исключаем пароль

class RegisterSerializer(serializers.ModelSerializer):
 """
 Сериализатор для регистрации новых пользователей
 Включает валидацию паролей и создание пользователя
 """
 # Поле пароля с валидацией (только для записи)
 password = serializers.CharField(
 write_only=True,
 required=True,
 validators=[validate_password] # Стандартная валидация Django
)

 # Поле подтверждения пароля
 password2 = serializers.CharField(write_only=True, required=True)

 class Meta:
 model = CustomUser
 fields = ['username', 'password', 'password2', 'email', 'role']

 def validate(self, attrs):
 """
 Валидация на уровне объекта
 Проверяет совпадение паролей
 """
 if attrs['password'] != attrs['password2']:
 raise serializers.ValidationError({
 "password": "Пароли должны совпадать."
 })
 return attrs

 def create(self, validated_data):
 """
 Создание нового пользователя
 Удаляет password2 и правильно хеширует пароль
 """
 # Удаляем поле подтверждения пароля
 validated_data.pop('password2', None)

 # Создаем пользователя без сохранения пароля
 user = CustomUser.objects.create(
 username=validated_data['username'],
 email=validated_data['email'],
 role=validated_data.get('role', CustomUser.CANDIDATE)
)

 # Правильно хешируем и сохраняем пароль
 user.set_password(validated_data['password'])
 user.save()

 return user

accounts/forms.py

Django-формы для HTML-интерфейса

69

from django import forms
from .models import CustomUser

Продолжение приложения B

Продолжение листинга B.1

class RegistrationForm(forms.ModelForm):
 """
 Форма регистрации для HTML-интерфейса
 Включает валидацию и создание пользователей
 """
 # Поля паролей с виджетом для скрытия ввода
 password = forms.CharField(widget=forms.PasswordInput, label="Пароль")

 password2 = forms.CharField(widget=forms.PasswordInput,
label="Повторите пароль")
 class Meta:
 model = CustomUser

 fields = ['username', 'email', 'role', 'password', 'password2']
 def clean(self):
 """
 Валидация формы на уровне объекта
 Проверяет совпадение введенных паролей
 """
 cleaned_data = super().clean()
 password1 = cleaned_data.get("password")
 password2 = cleaned_data.get("password2")

 if password1 and password2 and password1 != password2:
 raise forms.ValidationError("Пароли не совпадают")

 return cleaned_data
 def save(self, commit=True):
 """
 Сохранение пользователя с правильным хешированием пароля
 """
 user = super().save(commit=False)
 # Используем set_password для хеширования
 user.set_password(self.cleaned_data["password"])

 if commit:
 user.save()

 return user

accounts/urls.py

URL-маршруты для всех представлений модуля

from django.urls import path
from .views import (
 LoginPageView, RegisterPageView, ProfilePageView,
 AdminRegisterPageView, UserListView, InviteUserView,
 CandidateProfileDetailView, RegisterAPIView,
 LoginAPIView, LogoutAPIView, UserUpdateView,

)
Комбинированные маршруты для HTML и API
urlpatterns = [
 # HTML-страницы аутентификации
 path('login/', LoginPageView.as_view(), name='login'),
 path('register/', RegisterPageView.as_view(), name='signup'),
 path('admin_register/', AdminRegisterPageView.as_view(),
name='admin_signup'),
 path('users/', UserListView.as_view(), name='users_list'),

70

 path('invite/', InviteUserView.as_view(), name='invite_user'),
 path('profile/', ProfilePageView.as_view(), name='profile'),

Продолжение приложения B

Продолжение листинга B.1

 path('candidate/<int:pk>/', CandidateProfileDetailView.as_view(),
name='candidate_profile'),

 # API-эндпоинты
 path('api/register/', RegisterAPIView.as_view(), name='signup_api'),
 path('api/login/', LoginAPIView.as_view(), name='login_api'),
 path('api/logout/', LogoutAPIView.as_view(), name='logout_api'),
 path('user/<int:pk>/update/', UserUpdateView.as_view(),
name='user_update'),

]

accounts/api_urls.py

Отдельные API-маршруты для подключения в основном urls.py

from django.urls import path

from .views import RegisterAPIView, LoginAPIView, LogoutAPIView
Только API-эндпоинты для аутентификации
urlpatterns = [
 path('register/', RegisterAPIView.as_view(), name='signup_api'),
 path('login/', LoginAPIView.as_view(), name='login_api'),
 path('logout/', LogoutAPIView.as_view(), name='logout_api'),

]

accounts/html_urls.py

Отдельные HTML-маршруты для подключения в основном urls.py

from django.urls import path

from .views import LoginPageView, RegisterPageView, ProfilePageView
Только HTML-страницы аутентификации
urlpatterns = [
 path('login/', LoginPageView.as_view(), name='login'),
 path('register/', RegisterPageView.as_view(), name='signup'),
 path('profile/', ProfilePageView.as_view(), name='profile'),

]

accounts/admin.py

Конфигурация административной панели

from django.contrib import admin
from django.contrib.auth.admin import UserAdmin

from .models import CustomUser
class CustomUserAdmin(UserAdmin):
 """
 Кастомизация административной панели для CustomUser
 Добавляет поле role в отображение и редактирование
 """
 # Отображаемые поля в списке пользователей
 list_display = ('username', 'email', 'role', 'is_staff')

 # Добавляем поле role в форму редактирования
 fieldsets = UserAdmin.fieldsets + (
 (None, {'fields': ('role',)}),

)
Регистрируем кастомную модель в админке

71

admin.site.register(CustomUser, CustomUserAdmin)

Продолжение приложения B

Продолжение листинга B.1

accounts/decorators.py

Декораторы для контроля доступа по ролям

from django.http import HttpResponseForbidden

from functools import wraps
def role_required(allowed_roles):
 """
 Декоратор для ограничения доступа к представлениям по ролям

 Args:
 allowed_roles: список разрешенных ролей

 Usage:
 @role_required(['admin', 'hr_manager'])
 def my_view(request):
 return HttpResponse("Только для админов и HR-менеджеров")
 """
 def decorator(view_func):
 @wraps(view_func)
 def _wrapped_view(request, *args, kwargs):
 # Проверяем аутентификацию
 if not request.user.is_authenticated:
 return HttpResponseForbidden("Требуется авторизация.")

 # Проверяем роль пользователя
 if request.user.role not in allowed_roles:
 return HttpResponseForbidden(
 "У вас нет прав для доступа к этой странице."
)

 # Вызываем оригинальное представление
 return view_func(request, *args, kwargs)
 return _wrapped_view

 return decorator

accounts/apps.py

Конфигурация Django-приложения

from django.apps import AppConfig
class AccountsConfig(AppConfig):
 """
 Конфигурация приложения accounts
 Определяет настройки автополей и имя приложения
 """
 default_auto_field = 'django.db.models.BigAutoField'
 name = 'accounts'

Модуль employees - Управление сотрудниками
Модуль для управления информацией о сотрудниках компании

employees/models.py
Модель сотрудника с полной информацией

from django.db import models

from accounts.models import CustomUser

72

class Employee(models.Model):
 """

Продолжение приложения B

Продолжение листинга B.1

 Модель сотрудника компании
 Связана с пользователем через OneToOne для хранения профессиональной
информации
 """

 # Связь один-к-одному с пользователем системы
 # При удалении пользователя - удаляется и профиль сотрудника
 user = models.OneToOneField(
 CustomUser,
 on_delete=models.CASCADE,
 related_name='employee_profile'
)

 # Основная информация о сотруднике
 full_name = models.CharField(max_length=255, verbose_name="ФИО")
 date_hired = models.DateField(verbose_name="Дата приема на работу")
 position = models.CharField(max_length=255, verbose_name="Должность")
 qualification = models.TextField(verbose_name="Квалификация и навыки")
 department = models.CharField(max_length=255, verbose_name="Отдел")

 # История изменений и дополнительная информация
 history = models.TextField(
 blank=True,
 null=True,
 verbose_name="История изменений"

)
 class Meta:
 verbose_name = "Сотрудник"
 verbose_name_plural = "Сотрудники"

 ordering = ['full_name'] # Сортировка по умолчанию по ФИО
 def __str__(self):
 """Строковое представление сотрудника"""

 return self.full_name
 def get_years_of_service(self):
 """
 Вычисляет стаж работы сотрудника в годах
 """
 from datetime import date
 today = date.today()
 return today.year - self.date_hired.year - (
 (today.month, today.day) < (self.date_hired.month,
self.date_hired.day)

)

employees/views.py

API-представления для работы с сотрудниками

from rest_framework import generics
from .models import Employee

from .serializers import EmployeeSerializer
class EmployeeListCreateView(generics.ListCreateAPIView):
 """
 API-представление для списка сотрудников и создания новых

73

 GET: Возвращает список всех сотрудников
 POST: Создает нового сотрудника

Продолжение приложения B

Продолжение листинга B.1

 """
 queryset = Employee.objects.all()
 serializer_class = EmployeeSerializer

 def get_queryset(self):
 """
 Может фильтровать сотрудников по различным параметрам
 """
 queryset = Employee.objects.all()

 # Пример фильтрации по отделу
 department = self.request.query_params.get('department', None)
 if department is not None:
 queryset = queryset.filter(department__icontains=department)

 # Пример фильтрации по должности
 position = self.request.query_params.get('position', None)
 if position is not None:
 queryset = queryset.filter(position__icontains=position)

 return queryset
class EmployeeDetailView(generics.RetrieveUpdateDestroyAPIView):
 """
 API-представление для детальной работы с конкретным сотрудником

 GET: Получить информацию о сотруднике
 PUT/PATCH: Обновить информацию о сотруднике
 DELETE: Удалить сотрудника
 """
 queryset = Employee.objects.all()
 serializer_class = EmployeeSerializer

 def perform_update(self, serializer):
 """
 Дополнительная логика при обновлении сотрудника
 Например, логирование изменений
 """
 # Получаем старые данные для истории
 old_instance = Employee.objects.get(pk=self.get_object().pk)

 # Сохраняем обновленные данные
 serializer.save()

 # Можно добавить логику для отслеживания изменений
 # Например, записать в историю изменений
 new_instance = serializer.instance
 if old_instance.position != new_instance.position:
 history_entry = f"Изменена должность с '{old_instance.position}' на
'{new_instance.position}'"
 if new_instance.history:
 new_instance.history += f"\n{history_entry}"
 else:
 new_instance.history = history_entry

 new_instance.save()

74

employees/serializers.py

Продолжение приложения B

Продолжение листинга B.1

Сериализаторы для API работы с сотрудниками

from rest_framework import serializers
from .models import Employee

from accounts.serializers import UserSerializer
class EmployeeSerializer(serializers.ModelSerializer):
 """
 Сериализатор для модели Employee
 Включает все поля сотрудника и информацию о связанном пользователе
 """

 # Вложенный сериализатор для отображения информации о пользователе
 user_info = UserSerializer(source='user', read_only=True)

 # Поле для отображения стажа работы (только чтение)
 years_of_service = serializers.SerializerMethodField()

 class Meta:
 model = Employee
 fields = [
 'id', 'user', 'user_info', 'full_name',
 'date_hired', 'position', 'qualification',
 'department', 'history', 'years_of_service'
]

 def get_years_of_service(self, obj):
 """
 Вычисляет и возвращает стаж работы сотрудника
 """
 return obj.get_years_of_service()

 def validate_date_hired(self, value):
 """
 Валидация даты приема на работу
 Проверяет, что дата не в будущем
 """
 from datetime import date
 if value > date.today():
 raise serializers.ValidationError(
 "Дата приема на работу не может быть в будущем"
)
 return value

 def validate_full_name(self, value):
 """
 Валидация ФИО
 Проверяет минимальную длину и отсутствие цифр
 """
 if len(value.strip()) < 2:
 raise serializers.ValidationError(
 "ФИО должно содержать минимум 2 символа"
)

 if any(char.isdigit() for char in value):

75

 raise serializers.ValidationError(
 "ФИО не должно содержать цифры"

Продолжение приложения B

Продолжение листинга B.1

)

 return value.strip()

employees/urls.py

URL-маршруты для API сотрудников

from django.urls import path

from .views import EmployeeListCreateView, EmployeeDetailView
API-маршруты для работы с сотрудниками
urlpatterns = [
 # Список сотрудников и создание нового
 # GET /api/employees/ - список всех сотрудников
 # POST /api/employees/ - создание нового сотрудника
 path('', EmployeeListCreateView.as_view(), name='employees'),

 # Работа с конкретным сотрудником
 # GET /api/employees/{id}/ - информация о сотруднике
 # PUT /api/employees/{id}/ - полное обновление сотрудника
 # PATCH /api/employees/{id}/ - частичное обновление сотрудника
 # DELETE /api/employees/{id}/ - удаление сотрудника
path('<int:pk>/', EmployeeDetailView.as_view(), name='employee-detail'),

]

employees/forms.py

Django-формы для HTML-интерфейса управления сотрудниками

from django import forms
from .models import Employee

from accounts.models import CustomUser
class EmployeeForm(forms.ModelForm):
 """
 Форма для создания и редактирования сотрудников
 Используется в HTML-интерфейсе администрирования
 """

 class Meta:
 model = Employee
 fields = [
 'user', 'full_name', 'date_hired',
 'position', 'qualification', 'department'
]

 # Человекочитаемые названия полей
 labels = {
 'user': 'Пользователь',
 'full_name': 'ФИО',
 'date_hired': 'Дата приёма',
 'position': 'Должность',
 'qualification': 'Квалификация',
 'department': 'Отдел',
 }

 # Кастомные виджеты для улучшения UX

76

 widgets = {
 # HTML5 виджет для выбора даты
 'date_hired': forms.DateInput(attrs={
 'type': 'date',
 'class': 'form-control'
 }),

 # Текстовая область для квалификации
 'qualification': forms.Textarea(attrs={
 'rows': 3,
 'class': 'form-control',
 'placeholder': 'Опишите квалификацию и навыки сотрудника'
 }),

 # Стилизация остальных полей
 'full_name': forms.TextInput(attrs={
 'class': 'form-control',
 'placeholder': 'Фамилия Имя Отчество'
 }),
 'position': forms.TextInput(attrs={
 'class': 'form-control',
 'placeholder': 'Должность сотрудника'
 }),
 'department': forms.TextInput(attrs={
 'class': 'form-control',
 'placeholder': 'Название отдела'
 }),
 }

 def __init__(self, *args, kwargs):
 """
 Инициализация формы с дополнительной настройкой
 """
 super().__init__(*args, kwargs)

 # Фильтруем пользователей только с ролью employee или hr_manager
 self.fields['user'].queryset = CustomUser.objects.filter(
 role__in=[CustomUser.EMPLOYEE, CustomUser.HR_MANAGER]
)

 # Устанавливаем пустой выбор для пользователя
 self.fields['user'].empty_label = "Выберите пользователя"

 def clean_full_name(self):
 """
 Дополнительная валидация ФИО
 """
 full_name = self.cleaned_data.get('full_name')

 if full_name:
 # Проверяем на минимальное количество слов (имя и фамилия)
 words = full_name.strip().split()
 if len(words) < 2:
 raise forms.ValidationError(
 "ФИО должно содержать минимум имя и фамилию"
)

 # Проверяем на наличие цифр
 if any(char.isdigit() for char in full_name):
 raise forms.ValidationError(
 "ФИО не должно содержать цифры"

77

)

Продолжение приложения B

Продолжение листинга B.1

 return full_name

 def clean_date_hired(self):
 """
 Валидация даты приема на работу
 """
 date_hired = self.cleaned_data.get('date_hired')

 if date_hired:
 from datetime import date
 if date_hired > date.today():
 raise forms.ValidationError(
 "Дата приема на работу не может быть в будущем"
)

 return date_hired

employees/apps.py

Конфигурация Django-приложения
from django.apps import AppConfig

class EmployeesConfig(AppConfig):
 """
 Конфигурация приложения employees
 Определяет настройки автополей и имя приложения
 """
 default_auto_field = 'django.db.models.BigAutoField'
 name = 'employees'
 verbose_name = 'Управление сотрудниками'

 def ready(self):
 """
 Выполняется при готовности приложения
 Здесь можно подключить сигналы Django
 """
 # Импортируем сигналы, если они есть
 # import employees.signals

 pass

employees/admin.py

Конфигурация административной панели

from django.contrib import admin

from .models import Employee
@admin.register(Employee)
class EmployeeAdmin(admin.ModelAdmin):
 """
 Конфигурация административного интерфейса для сотрудников
 """

 # Поля, отображаемые в списке сотрудников
 list_display = [
 'full_name', 'position', 'department',
 'date_hired', 'get_user_email'
]

78

 # Поля для фильтрации в боковой панели

Продолжение приложения B

Продолжение листинга B.1

 list_filter = ['department', 'position', 'date_hired']

 # Поля для поиска
 search_fields = ['full_name', 'position', 'department', 'user__username']

 # Поля только для чтения
 readonly_fields = ['get_years_of_service']

 # Группировка полей в форме редактирования
 fieldsets = (
 ('Основная информация', {
 'fields': ('user', 'full_name', 'date_hired')
 }),
 ('Профессиональная информация', {
 'fields': ('position', 'department', 'qualification')
 }),
 ('Дополнительно', {
 'fields': ('history', 'get_years_of_service'),
 'classes': ('collapse',) # Свернутая секция
 }),
)

 def get_user_email(self, obj):
 """
 Отображает email связанного пользователя
 """
 return obj.user.email if obj.user else '-'
 get_user_email.short_description = 'Email'

 def get_years_of_service(self, obj):
 """
 Отображает стаж работы сотрудника
 """
 return f"{obj.get_years_of_service()} лет"
 get_years_of_service.short_description = 'Стаж работы'

Модуль vacancies - Управление вакансиями
Модуль для управления вакансиями и откликами кандидатов

vacancies/models.py
Модели вакансий и откликов

from django.db import models

from accounts.models import CustomUser
class Vacancy(models.Model):
 """
 Модель вакансии компании
 Содержит всю информацию о доступных позициях
 """

 # Основная информация о вакансии
 title = models.CharField(max_length=255, verbose_name="Название вакансии")
 description = models.TextField(verbose_name="Описание вакансии")
 requirements = models.TextField(verbose_name="Требования к кандидату")
 conditions = models.TextField(verbose_name="Условия работы")

79

 # Даты управления вакансией

Продолжение приложения B

Продолжение листинга B.1

 posting_date = models.DateField(
 auto_now_add=True,
 verbose_name="Дата публикации"
)
 closing_date = models.DateField(
 null=True,
 blank=True,
 verbose_name="Дата закрытия"
)

 # Статус вакансии
 is_archived = models.BooleanField(
 default=False,
 verbose_name="Архивирована"
)

 class Meta:
 verbose_name = "Вакансия"
 verbose_name_plural = "Вакансии"
 ordering = ['-posting_date'] # Сортировка по дате (новые сначала)

 def __str__(self):
 """Строковое представление вакансии"""
 return self.title

 @property
 def is_active(self):
 """
 Проверяет, активна ли вакансия
 Вакансия активна, если не архивирована и не истекла дата закрытия
 """
 from datetime import date

 if self.is_archived:
 return False

 if self.closing_date and self.closing_date < date.today():
 return False

 return True

 def get_responses_count(self):
 """
 Возвращает количество откликов на вакансию
 """

 return self.responses.count()
class VacancyResponse(models.Model):
 """
 Модель отклика кандидата на вакансию
 Связывает кандидата с вакансией и отслеживает статус рассмотрения
 """

 # Статусы рассмотрения отклика
 STATUS_CHOICES = [

80

 ('new', 'Новый'),
 ('review', 'На рассмотрении'),

Продолжение приложения B

Продолжение листинга B.1

 ('interview', 'Собеседование'),
 ('accepted', 'Принят'),
 ('rejected', 'Отклонен'),
]

 # Основные связи
 vacancy = models.ForeignKey(
 Vacancy,
 on_delete=models.CASCADE,
 related_name='responses',
 verbose_name="Вакансия"
)
 candidate = models.ForeignKey(
 CustomUser,
 on_delete=models.CASCADE,
 related_name='vacancy_responses',
 verbose_name="Кандидат"
)

 # Данные отклика
 resume = models.FileField(
 upload_to='resumes/',
 verbose_name="Резюме"
)
 cover_letter = models.TextField(
 blank=True,
 verbose_name="Сопроводительное письмо"
)

 # Управление процессом
 status = models.CharField(
 max_length=20,
 choices=STATUS_CHOICES,
 default='new',
 verbose_name="Статус"
)
 submitted_at = models.DateTimeField(
 auto_now_add=True,
 verbose_name="Дата подачи"
)

 # Комментарии HR-менеджера
 hr_comments = models.TextField(
 blank=True,
 verbose_name="Комментарии HR"
)

 class Meta:
 verbose_name = "Отклик на вакансию"
 verbose_name_plural = "Отклики на вакансии"
 unique_together = ['vacancy', 'candidate'] # Один отклик на вакансию
от кандидата
 ordering = ['-submitted_at']

81

 def __str__(self):
 """Строковое представление отклика"""

Продолжение приложения B

Продолжение листинга B.1

 return f"{self.candidate.username} -> {self.vacancy.title}"

 def get_status_display_class(self):
 """
 Возвращает CSS-класс для отображения статуса
 """
 status_classes = {
 'new': 'badge-info',
 'review': 'badge-warning',
 'interview': 'badge-primary',
 'accepted': 'badge-success',
 'rejected': 'badge-danger',
 }

 return status_classes.get(self.status, 'badge-secondary')

vacancies/views.py

API-представления для работы с вакансиями

from rest_framework import generics, status
from rest_framework.decorators import api_view, permission_classes
from rest_framework.response import Response
from rest_framework.permissions import IsAuthenticated
from django.shortcuts import get_object_or_404
from .models import Vacancy, VacancyResponse

from .serializers import VacancySerializer, VacancyResponseSerializer
class VacancyListCreateView(generics.ListCreateAPIView):
 """
 API-представление для списка вакансий и создания новых

 GET: Возвращает список активных вакансий
 POST: Создает новую вакансию (только для HR-менеджеров и админов)
 """
 serializer_class = VacancySerializer

 def get_queryset(self):
 """
 Фильтрует вакансии в зависимости от параметров запроса
 """
 queryset = Vacancy.objects.all()

 # Показываем только активные вакансии для обычных пользователей
 show_archived = self.request.query_params.get('archived', 'false')
 if show_archived.lower() != 'true':
 queryset = queryset.filter(is_archived=False)

 # Фильтрация по ключевым словам в названии
 search = self.request.query_params.get('search', None)
 if search:
 queryset = queryset.filter(title__icontains=search)

 return queryset

 def perform_create(self, serializer):
 """

82

 Дополнительная логика при создании вакансии
 """

Продолжение приложения B

Продолжение листинга B.1

 # Можно добавить автора вакансии
 # serializer.save(created_by=self.request.user)

 serializer.save()
class VacancyDetailView(generics.RetrieveUpdateDestroyAPIView):
 """
 API-представление для работы с конкретной вакансией

 GET: Получить детали вакансии
 PUT/PATCH: Обновить вакансию
 DELETE: Удалить вакансию
 """
 queryset = Vacancy.objects.all()

 serializer_class = VacancySerializer
class VacancyResponseListCreateView(generics.ListCreateAPIView):
 """
 API-представление для откликов на вакансии

 GET: Список откликов (для HR) или откликов пользователя
 POST: Создать новый отклик на вакансию
 """
 serializer_class = VacancyResponseSerializer
 permission_classes = [IsAuthenticated]

 def get_queryset(self):
 """
 Возвращает отклики в зависимости от роли пользователя
 """
 user = self.request.user

 # HR-менеджеры и админы видят все отклики
 if user.role in ['admin', 'hr_manager']:
 return VacancyResponse.objects.all()

 # Обычные пользователи видят только свои отклики
 return VacancyResponse.objects.filter(candidate=user)

 def perform_create(self, serializer):
 """
 Автоматически устанавливает кандидата как текущего пользователя
 """

 serializer.save(candidate=self.request.user)
class VacancyResponseDetailView(generics.RetrieveUpdateDestroyAPIView):
 """
 API-представление для работы с конкретным откликом
 """
 queryset = VacancyResponse.objects.all()
 serializer_class = VacancyResponseSerializer
 permission_classes = [IsAuthenticated]

 def get_queryset(self):
 """
 Фильтрует отклики по правам доступа
 """
 user = self.request.user

83

 # HR-менеджеры и админы видят все отклики
 if user.role in ['admin', 'hr_manager']:
 return VacancyResponse.objects.all()

 # Пользователи видят только свои отклики

 return VacancyResponse.objects.filter(candidate=user)
@api_view(['POST'])
@permission_classes([IsAuthenticated])
def respond_to_vacancy(request, vacancy_id):
 """
 Специальный эндпоинт для отклика на вакансию
 Упрощенный интерфейс для подачи отклика
 """
 vacancy = get_object_or_404(Vacancy, id=vacancy_id)

 # Проверяем, что вакансия активна
 if not vacancy.is_active:
 return Response(
 {'error': 'Вакансия неактивна или закрыта'},
 status=status.HTTP_400_BAD_REQUEST
)

 # Проверяем, не подавал ли пользователь уже отклик
 existing_response = VacancyResponse.objects.filter(
 vacancy=vacancy,
 candidate=request.user
).first()

 if existing_response:
 return Response(
 {'error': 'Вы уже откликнулись на эту вакансию'},
 status=status.HTTP_400_BAD_REQUEST
)

 # Создаем отклик
 serializer = VacancyResponseSerializer(data=request.data)
 if serializer.is_valid():
 serializer.save(
 vacancy=vacancy,
 candidate=request.user
)
 return Response(serializer.data, status=status.HTTP_201_CREATED)

 return Response(serializer.errors,
status=status.HTTP_400_BAD_REQUEST)
@api_view(['PATCH'])
@permission_classes([IsAuthenticated])
def update_response_status(request, response_id):
 """
 Эндпоинт для обновления статуса отклика (только для HR)
 """
 if request.user.role not in ['admin', 'hr_manager']:
 return Response(
 {'error': 'Недостаточно прав'},
 status=status.HTTP_403_FORBIDDEN
)

 response_obj = get_object_or_404(VacancyResponse, id=response_id)

 new_status = request.data.get('status')

84

 hr_comments = request.data.get('hr_comments', '')

Продолжение приложения B

Продолжение листинга B.1

 if new_status not in dict(VacancyResponse.STATUS_CHOICES):
 return Response(
 {'error': 'Неверный статус'},
 status=status.HTTP_400_BAD_REQUEST
)

 response_obj.status = new_status
 response_obj.hr_comments = hr_comments
 response_obj.save()

 return Response({
 'message': 'Статус обновлен',
 'status': response_obj.get_status_display()

 })

vacancies/serializers.py

Сериализаторы для API работы с вакансиями

from rest_framework import serializers
from .models import Vacancy, VacancyResponse

from accounts.serializers import UserSerializer
class VacancySerializer(serializers.ModelSerializer):
 """
 Сериализатор для модели Vacancy
 Включает дополнительные вычисляемые поля
 """

 # Вычисляемые поля только для чтения
 is_active = serializers.ReadOnlyField()
 responses_count = serializers.SerializerMethodField()
 days_since_posting = serializers.SerializerMethodField()

 class Meta:
 model = Vacancy
 fields = [
 'id', 'title', 'description', 'requirements',
 'conditions', 'posting_date', 'closing_date',
 'is_archived', 'is_active', 'responses_count',
 'days_since_posting'
]

 def get_responses_count(self, obj):
 """Возвращает количество откликов на вакансию"""
 return obj.get_responses_count()

 def get_days_since_posting(self, obj):
 """Возвращает количество дней с момента публикации"""
 from datetime import date
 delta = date.today() - obj.posting_date
 return delta.days

 def validate_closing_date(self, value):
 """
 Валидация даты закрытия вакансии

85

 """
 if value:

Продолжение приложения B

Продолжение листинга B.1

 from datetime import date
 if value < date.today():
 raise serializers.ValidationError(
 "Дата закрытия не может быть в прошлом"
)
 return value

 def validate_title(self, value):
 """
 Валидация названия вакансии
 """
 if len(value.strip()) < 5:
 raise serializers.ValidationError(
 "Название вакансии должно содержать минимум 5 символов"
)

 return value.strip()
class VacancyResponseSerializer(serializers.ModelSerializer):
 """
 Сериализатор для откликов на вакансии
 """

 # Вложенные сериализаторы для отображения связанных данных
 candidate_info = UserSerializer(source='candidate', read_only=True)
 vacancy_info = VacancySerializer(source='vacancy', read_only=True)

 # Человекочитаемое отображение статуса
 status_display = serializers.CharField(
 source='get_status_display',
 read_only=True
)

 # CSS-класс для статуса
 status_class = serializers.CharField(
 source='get_status_display_class',
 read_only=True
)

 class Meta:
 model = VacancyResponse
 fields = [
 'id', 'vacancy', 'vacancy_info', 'candidate',
 'candidate_info', 'resume', 'cover_letter',
 'status', 'status_display', 'status_class',
 'submitted_at', 'hr_comments'
]
 read_only_fields = ['candidate', 'submitted_at']

 def validate_resume(self, value):
 """
 Валидация загружаемого резюме
 """
 # Проверяем размер файла (максимум 5MB)
 if value.size > 5 * 1024 * 1024:
 raise serializers.ValidationError(

86

 "Размер файла резюме не должен превышать 5MB"
)

Продолжение приложения B

Продолжение листинга B.1

 # Проверяем расширение файла
 allowed_extensions = ['.pdf', '.doc', '.docx']
 file_extension = value.name.lower().split('.')[-1]
 if f'.{file_extension}' not in allowed_extensions:
 raise serializers.ValidationError(
 "Допустимые форматы резюме: PDF, DOC, DOCX"
)

 return value

 def validate_cover_letter(self, value):
 """
 Валидация сопроводительного письма
 """
 if value and len(value.strip()) < 50:
 raise serializers.ValidationError(
 "Сопроводительное письмо должно содержать минимум 50 символов"
)
 return value

 def validate(self, attrs):
 """
 Валидация на уровне объекта
 """
 # Проверяем, что кандидат не подает повторный отклик
 if not self.instance: # Только для создания, не для обновления
 vacancy = attrs.get('vacancy')
 candidate = self.context['request'].user

 existing_response = VacancyResponse.objects.filter(
 vacancy=vacancy,
 candidate=candidate
).exists()

 if existing_response:
 raise serializers.ValidationError(
 "Вы уже откликнулись на эту вакансию"
)

 return attrs
class VacancyResponseCreateSerializer(serializers.ModelSerializer):
 """
 Упрощенный сериализатор для создания откликов
 Используется в специальных эндпоинтах
 """
 class Meta:
 model = VacancyResponse
 fields = ['resume', 'cover_letter']

 def validate_resume(self, value):
 """Валидация резюме для упрощенного сериализатора"""
 if value.size > 5 * 1024 * 1024:
 raise serializers.ValidationError(

87

 "Размер файла резюме не должен превышать 5MB"
)

Продолжение приложения B

Продолжение листинга B.1

 return value

vacancies/urls.py

URL-маршруты для API вакансий

from django.urls import path
from .views import (
 VacancyListCreateView, VacancyDetailView,
 VacancyResponseListCreateView, VacancyResponseDetailView,
 respond_to_vacancy, update_response_status

)
API-маршруты для работы с вакансиями и откликами
urlpatterns = [
 # Основные CRUD операции для вакансий
 # GET /api/vacancies/ - список вакансий
 # POST /api/vacancies/ - создание новой вакансии
 path('', VacancyListCreateView.as_view(), name='vacancies'),

 # Работа с конкретной вакансией
 # GET /api/vacancies/{id}/ - детали вакансии
 # PUT/PATCH /api/vacancies/{id}/ - обновление вакансии
 # DELETE /api/vacancies/{id}/ - удаление вакансии
 path('<int:pk>/', VacancyDetailView.as_view(), name='vacancy-detail'),

 # Работа с откликами на вакансии
 # GET /api/vacancies/responses/ - список откликов
 # POST /api/vacancies/responses/ - создание отклика
 path('responses/', VacancyResponseListCreateView.as_view(), name='vacancy-
responses'),

 # Работа с конкретным откликом
 # GET /api/vacancies/responses/{id}/ - детали отклика
 # PUT/PATCH /api/vacancies/responses/{id}/ - обновление отклика
 # DELETE /api/vacancies/responses/{id}/ - удаление отклика
 path('responses/<int:pk>/', VacancyResponseDetailView.as_view(),
name='vacancy-response-detail'),

 # Специальные эндпоинты
 # POST /api/vacancies/{id}/respond/ - упрощенный отклик на вакансию
 path('<int:vacancy_id>/respond/', respond_to_vacancy, name='respond-to-
vacancy'),

 # PATCH /api/vacancies/responses/{id}/status/ - обновление статуса отклика
(для HR)
 path('responses/<int:response_id>/status/', update_response_status,
name='update-response-status'),

]

vacancies/forms.py

Django-формы для HTML-интерфейса

from django import forms

from .models import Vacancy, VacancyResponse
class VacancyForm(forms.ModelForm):
 """

88

 Форма для создания и редактирования вакансий
 """

Продолжение приложения B

Продолжение листинга B.1

 class Meta:
 model = Vacancy
 fields = [
 'title', 'description', 'requirements',
 'conditions', 'closing_date', 'is_archived'
]

 # Человекочитаемые названия полей
 labels = {
 'title': 'Название',
 'description': 'Описание',
 'requirements': 'Требования',
 'conditions': 'Условия',
 'closing_date': 'Дата закрытия',
 'is_archived': 'Архивировано'
 }

 # Кастомные виджеты для улучшения UX
 widgets = {
 'closing_date': forms.DateInput(attrs={
 'type': 'date',
 'class': 'form-control'
 }),
 'description': forms.Textarea(attrs={
 'rows': 4,
 'class': 'form-control',
 'placeholder': 'Подробное описание вакансии'
 }),
 'requirements': forms.Textarea(attrs={
 'rows': 4,
 'class': 'form-control',
 'placeholder': 'Требования к кандидату'
 }),
 'conditions': forms.Textarea(attrs={
 'rows': 4,
 'class': 'form-control',
 'placeholder': 'Условия работы и компенсация'
 }),
 'title': forms.TextInput(attrs={
 'class': 'form-control',
 'placeholder': 'Название должности'
 }),
 }

 def clean_title(self):
 """Валидация названия вакансии"""
 title = self.cleaned_data.get('title')
 if title and len(title.strip()) < 5:
 raise forms.ValidationError(
 "Название вакансии должно содержать минимум 5 символов"
)
 return title.strip() if title else title

 def clean_closing_date(self):

89

 """Валидация даты закрытия"""
 closing_date = self.cleaned_data.get('closing_date')

Продолжение приложения B

Продолжение листинга B.1

 if closing_date:
 from datetime import date
 if closing_date < date.today():
 raise forms.ValidationError(
 "Дата закрытия не может быть в прошлом"
)

 return closing_date
class VacancyResponseForm(forms.ModelForm):
 """
 Форма для подачи отклика на вакансию
 """
 class Meta:
 model = VacancyResponse
 fields = ['vacancy', 'resume', 'cover_letter']

 labels = {
 'vacancy': 'Вакансия',
 'resume': 'Резюме',
 'cover_letter': 'Сопроводительное письмо'
 }

 widgets = {
 'cover_letter': forms.Textarea(attrs={
 'rows': 5,
 'class': 'form-control',
 'placeholder': 'Расскажите о себе и почему вы подходите для
этой позиции'
 }),
 'resume': forms.FileInput(attrs={
 'class': 'form-control',
 'accept': '.pdf,.doc,.docx'
 })
 }

 def __init__(self, *args, kwargs):
 """
 Инициализация формы с фильтрацией активных вакансий
 """
 super().__init__(*args, kwargs)

 # Показываем только активные вакансии
 self.fields['vacancy'].queryset = Vacancy.objects.filter(
 is_archived=False
)

 # Устанавливаем пустой выбор
 self.fields['vacancy'].empty_label = "Выберите вакансию"

 def clean_resume(self):
 """Валидация загружаемого резюме"""
 resume = self.cleaned_data.get('resume')

 if resume:
 # Проверяем размер файла (максимум 5MB)

90

 if resume.size > 5 * 1024 * 1024:
 raise forms.ValidationError(

Продолжение приложения B

Продолжение листинга B.1

 "Размер файла резюме не должен превышать 5MB"
)

 # Проверяем расширение файла
 allowed_extensions = ['.pdf', '.doc', '.docx']
 file_extension = resume.name.lower().split('.')[-1]
 if f'.{file_extension}' not in allowed_extensions:
 raise forms.ValidationError(
 "Допустимые форматы резюме: PDF, DOC, DOCX"
)

 return resume

 def clean_cover_letter(self):
 """Валидация сопроводительного письма"""
 cover_letter = self.cleaned_data.get('cover_letter')

 if cover_letter and len(cover_letter.strip()) < 50:
 raise forms.ValidationError(
 "Сопроводительное письмо должно содержать минимум 50 символов"
)

 return cover_letter.strip() if cover_letter else cover_letter
class VacancyResponseStatusForm(forms.ModelForm):
 """
 Форма для HR-менеджеров для обновления статуса отклика
 """
 class Meta:
 model = VacancyResponse
 fields = ['status', 'hr_comments']

 labels = {
 'status': 'Статус рассмотрения',
 'hr_comments': 'Комментарии HR'
 }

 widgets = {
 'status': forms.Select(attrs={
 'class': 'form-control'
 }),
 'hr_comments': forms.Textarea(attrs={
 'rows': 3,
 'class': 'form-control',
 'placeholder': 'Комментарии по результатам рассмотрения'
 })

 }

vacancies/apps.py

Конфигурация Django-приложения

from django.apps import AppConfig
class VacanciesConfig(AppConfig):
 """
 Конфигурация приложения vacancies

91

 Определяет настройки автополей и имя приложения
 """

Продолжение приложения B

Продолжение листинга B.1

 default_auto_field = 'django.db.models.BigAutoField'
 name = 'vacancies'
 verbose_name = 'Управление вакансиями'

 def ready(self):
 """
 Выполняется при готовности приложения
 Здесь можно подключить сигналы Django
 """
 # Пример подключения сигналов для уведомлений
 # import vacancies.signals

 pass

vacancies/admin.py

Конфигурация административной панели

from django.contrib import admin

from .models import Vacancy, VacancyResponse
@admin.register(Vacancy)
class VacancyAdmin(admin.ModelAdmin):
 """
 Конфигурация административного интерфейса для вакансий
 """

 # Поля для отображения в списке
 list_display = [
 'title', 'posting_date', 'closing_date',
 'is_archived', 'get_responses_count'
]

 # Фильтры в боковой панели
 list_filter = ['is_archived', 'posting_date']

 # Поля для поиска
 search_fields = ['title', 'description']

 # Поля только для чтения
 readonly_fields = ['posting_date', 'get_responses_count']

 # Действия с группой объектов
 actions = ['archive_vacancies', 'unarchive_vacancies']
 def get_responses_count(self, obj):
 """Отображает количество откликов"""
 return obj.get_responses_count()
 get_responses_count.short_description = 'Откликов'

 def archive_vacancies(self, request, queryset):
 """Действие для архивирования вакансий"""
 updated = queryset.update(is_archived=True)
 self.message_user(request, f'Архивировано {updated} вакансий.')
 archive_vacancies.short_description = 'Архивировать выбранные вакансии'

 def unarchive_vacancies(self, request, queryset):
 """Действие для разархивирования вакансий"""

92

 updated = queryset.update(is_archived=False)
 self.message_user(request, f'Разархивировано {updated} вакансий.')

Продолжение приложения B

Продолжение листинга B.1

 unarchive_vacancies.short_description = 'Разархивировать выбранные

вакансии'
@admin.register(VacancyResponse)
class VacancyResponseAdmin(admin.ModelAdmin):
 """
 Конфигурация административного интерфейса для откликов
 """

 # Поля для отображения в списке
 list_display = [
 'get_candidate_name', 'get_vacancy_title',
 'status', 'submitted_at'
]

 # Фильтры в боковой панели
 list_filter = ['status', 'submitted_at', 'vacancy__title']

 # Поля для поиска
 search_fields = [
 'candidate__username', 'candidate__email',
 'vacancy__title'
]

 # Поля только для чтения
 readonly_fields = ['submitted_at']

 # Группировка полей в форме
 fieldsets = (
 ('Основная информация', {
 'fields': ('vacancy', 'candidate', 'submitted_at')
 }),
 ('Документы', {
 'fields': ('resume', 'cover_letter')
 }),
 ('Рассмотрение', {
 'fields': ('status', 'hr_comments')
 }),
)

 def get_candidate_name(self, obj):
 """Отображает имя кандидата"""
 return obj.candidate.username
 get_candidate_name.short_description = 'Кандидат'

 def get_vacancy_title(self, obj):
 """Отображает название вакансии"""
 return obj.vacancy.title
 get_vacancy_title.short_description = 'Вакансия'

Модуль documents - Управление документами
Модуль для управления шаблонами документов и документами сотрудников

documents/models.py
Модели для документооборота

93

from django.db import models
from employees.models import Employee

Продолжение приложения B

Продолжение листинга B.1

class DocumentTemplate(models.Model):
 """
 Модель шаблона документа
 Хранит типовые шаблоны документов для создания персонализированных
документов
 """

 # Основная информация о шаблоне
 name = models.CharField(
 max_length=255,
 verbose_name="Название шаблона"
)
 content = models.TextField(
 verbose_name="Содержание шаблона"
)
 created_at = models.DateTimeField(
 auto_now_add=True,
 verbose_name="Дата создания"

)
 class Meta:
 verbose_name = "Шаблон документа"
 verbose_name_plural = "Шаблоны документов"

 ordering = ['-created_at'] # Сортировка по дате создания (новые
сначала)
 def __str__(self):
 """Строковое представление шаблона"""
 return self.name

 def get_formatted_content(self, employee=None):
 """
 Возвращает контент шаблона с подставленными данными сотрудника
 Использует простые плейсхолдеры вида {field_name}
 """
 if not employee:
 return self.content

 # Словарь для замены плейсхолдеров
 replacements = {
 '{full_name}': employee.full_name,
 '{position}': employee.position,
 '{department}': employee.department,
 '{date_hired}': str(employee.date_hired),
 '{qualification}': employee.qualification,
 }
 formatted_content = self.content
 for placeholder, value in replacements.items():
 formatted_content = formatted_content.replace(placeholder, value)

 return formatted_content
class EmployeeDocument(models.Model):
 """
 Модель документа сотрудника
 Связывает конкретный документ с сотрудником и может быть основан на шаблоне
 """

94

 # Связи с другими моделями

Продолжение приложения B

Продолжение листинга B.1

 employee = models.ForeignKey(
 Employee,
 on_delete=models.CASCADE,
 related_name='documents',
 verbose_name="Сотрудник"
)
 template = models.ForeignKey(
 DocumentTemplate,
 on_delete=models.SET_NULL,
 null=True,
 blank=True,
 verbose_name="Шаблон документа"
)

 # Файл документа
 file = models.FileField(
 upload_to='employee_documents/',
 verbose_name="Файл документа"
)

 # Метаданные документа
 signed_at = models.DateTimeField(
 auto_now_add=True,
 verbose_name="Дата подписания/создания"
)

 class Meta:
 verbose_name = "Документ сотрудника"
 verbose_name_plural = "Документы сотрудников"
 ordering = ['-signed_at'] # Сортировка по дате (новые сначала)

 def __str__(self):
 """Строковое представление документа"""
 return f"Документ {self.id} для {self.employee.full_name}"

 def get_file_extension(self):
 """
 Возвращает расширение файла документа
 """
 if self.file and self.file.name:
 return self.file.name.split('.')[-1].lower()
 return None

 def get_file_size_mb(self):
 """
 Возвращает размер файла в мегабайтах
 """
 if self.file and hasattr(self.file, 'size'):
 return round(self.file.size / (1024 * 1024), 2)

 return 0

documents/views.py

API-представления для работы с документами

95

from rest_framework import generics, status
from rest_framework.decorators import api_view, permission_classes

Продолжение приложения B

Продолжение листинга B.1

from rest_framework.response import Response
from rest_framework.permissions import IsAuthenticated
from django.shortcuts import get_object_or_404
from django.http import HttpResponse, Http404
from .models import DocumentTemplate, EmployeeDocument
from .serializers import DocumentTemplateSerializer,
EmployeeDocumentSerializer

from employees.models import Employee
class DocumentTemplateListCreateView(generics.ListCreateAPIView):
 """
 API-представление для работы со списком шаблонов документов

 GET: Возвращает список всех шаблонов документов
 POST: Создает новый шаблон документа (только для админов и HR)
 """
 queryset = DocumentTemplate.objects.all()
 serializer_class = DocumentTemplateSerializer

 def get_queryset(self):
 """
 Фильтрует шаблоны по поисковому запросу если он передан
 """
 queryset = DocumentTemplate.objects.all()

 # Поиск по названию шаблона
 search = self.request.query_params.get('search', None)
 if search:
 queryset = queryset.filter(name__icontains=search)

 return queryset
class DocumentTemplateDetailView(generics.RetrieveUpdateDestroyAPIView):
 """
 API-представление для работы с конкретным шаблоном документа

 GET: Получить детали шаблона
 PUT/PATCH: Обновить шаблон
 DELETE: Удалить шаблон
 """
 queryset = DocumentTemplate.objects.all()

 serializer_class = DocumentTemplateSerializer
class EmployeeDocumentListCreateView(generics.ListCreateAPIView):
 """
 API-представление для работы с документами сотрудников

 GET: Список документов (фильтруется по правам доступа)
 POST: Создать новый документ для сотрудника
 """
 serializer_class = EmployeeDocumentSerializer
 permission_classes = [IsAuthenticated]

 def get_queryset(self):
 """
 Возвращает документы в зависимости от роли пользователя
 """

96

 user = self.request.user

Продолжение приложения B

Продолжение листинга B.1

 # Админы и HR видят все документы
 if user.role in ['admin', 'hr_manager']:
 queryset = EmployeeDocument.objects.all()
 # Сотрудники видят только свои документы
 elif hasattr(user, 'employee_profile'):
 queryset = EmployeeDocument.objects.filter(
 employee=user.employee_profile
)
 else:
 # Пользователи без профиля сотрудника не видят документы
 queryset = EmployeeDocument.objects.none()

 # Фильтрация по сотруднику (для HR и админов)
 employee_id = self.request.query_params.get('employee', None)
 if employee_id and user.role in ['admin', 'hr_manager']:
 queryset = queryset.filter(employee_id=employee_id)

 return queryset
class EmployeeDocumentDetailView(generics.RetrieveUpdateDestroyAPIView):
 """
 API-представление для работы с конкретным документом сотрудника

 GET: Получить детали документа
 PUT/PATCH: Обновить документ
 DELETE: Удалить документ
 """
 serializer_class = EmployeeDocumentSerializer
 permission_classes = [IsAuthenticated]

 def get_queryset(self):
 """
 Фильтрует документы по правам доступа
 """
 user = self.request.user

 # Админы и HR видят все документы
 if user.role in ['admin', 'hr_manager']:
 return EmployeeDocument.objects.all()
 # Сотрудники видят только свои документы
 elif hasattr(user, 'employee_profile'):
 return EmployeeDocument.objects.filter(
 employee=user.employee_profile
)
 else:

 return EmployeeDocument.objects.none()
@api_view(['POST'])
@permission_classes([IsAuthenticated])
def generate_document_from_template(request, template_id, employee_id):
 """
Специальный эндпоинт для генерации документа на основе шаблона
 Создает персонализированный документ для конкретного сотрудника
 """
 # Проверяем права доступа
 if request.user.role not in ['admin', 'hr_manager']:

97

 return Response(
 {'error': 'Недостаточно прав для генерации документов'},

Продолжение приложения B

Продолжение листинга B.1

 status=status.HTTP_403_FORBIDDEN
)

 # Получаем шаблон и сотрудника
 template = get_object_or_404(DocumentTemplate, id=template_id)
 employee = get_object_or_404(Employee, id=employee_id)

 # Генерируем персонализированный контент
 personalized_content = template.get_formatted_content(employee)

 # Возвращаем сгенерированный контент
 return Response({
 'template_name': template.name,
 'employee_name': employee.full_name,
 'generated_content': personalized_content,
 'employee_id': employee.id,
 'template_id': template.id

 })
@api_view(['GET'])
@permission_classes([IsAuthenticated])
def download_document(request, document_id):
 """
 Эндпоинт для скачивания файла документа
 Проверяет права доступа перед отдачей файла
 """
 user = request.user

 # Получаем документ
 try:
 if user.role in ['admin', 'hr_manager']:
 document = EmployeeDocument.objects.get(id=document_id)
 elif hasattr(user, 'employee_profile'):
 document = EmployeeDocument.objects.get(
 id=document_id,
 employee=user.employee_profile
)
 else:
 raise Http404
 except EmployeeDocument.DoesNotExist:
 raise Http404

 # Проверяем наличие файла
 if not document.file:
 return Response(
 {'error': 'Файл не найден'},
 status=status.HTTP_404_NOT_FOUND
)

 try:
 # Отдаем файл
 response = HttpResponse(
 document.file.read(),
 content_type='application/octet-stream'
)

98

 response['Content-Disposition'] = f'attachment;
filename="{document.file.name}"'

Продолжение приложения B

Продолжение листинга B.1

 return response
 except Exception as e:
 return Response(
 {'error': 'Ошибка при загрузке файла'},
 status=status.HTTP_500_INTERNAL_SERVER_ERROR

)

documents/serializers.py

Сериализаторы для API работы с документами

from rest_framework import serializers
from .models import DocumentTemplate, EmployeeDocument

from employees.serializers import EmployeeSerializer
class DocumentTemplateSerializer(serializers.ModelSerializer):
 """
 Сериализатор для шаблонов документов
 Включает валидацию и дополнительные поля
 """

 # Дополнительные поля только для чтения
 content_length = serializers.SerializerMethodField()
 usage_count = serializers.SerializerMethodField()

 class Meta:
 model = DocumentTemplate
 fields = [
 'id', 'name', 'content', 'created_at',
 'content_length', 'usage_count'
]
 read_only_fields = ['created_at']

 def get_content_length(self, obj):
 """Возвращает длину контента шаблона в символах"""
 return len(obj.content) if obj.content else 0

 def get_usage_count(self, obj):
 """Возвращает количество документов, созданных на основе этого
шаблона"""
 return obj.employeedocument_set.count()

 def validate_name(self, value):
 """
 Валидация названия шаблона
 """
 if len(value.strip()) < 3:
 raise serializers.ValidationError(
 "Название шаблона должно содержать минимум 3 символа"
)
 return value.strip()

 def validate_content(self, value):
 """
 Валидация содержимого шаблона
 """

99

 if len(value.strip()) < 10:
 raise serializers.ValidationError(

Продолжение приложения B

Продолжение листинга B.1

 "Содержимое шаблона должно содержать минимум 10 символов"
)

 return value.strip()
class EmployeeDocumentSerializer(serializers.ModelSerializer):
 """
 Сериализатор для документов сотрудников
 Включает информацию о связанном сотруднике и шаблоне
 """

 # Вложенные сериализаторы для отображения связанных данных
 employee_info = EmployeeSerializer(source='employee', read_only=True)
 template_info = DocumentTemplateSerializer(source='template',
read_only=True)

 # Дополнительные поля
 file_extension = serializers.CharField(
 source='get_file_extension',
 read_only=True
)
 file_size_mb = serializers.FloatField(
 source='get_file_size_mb',
 read_only=True
)
 file_url = serializers.SerializerMethodField()

 class Meta:
 model = EmployeeDocument
 fields = [
 'id', 'employee', 'employee_info', 'template',
 'template_info', 'file', 'file_url', 'file_extension',
 'file_size_mb', 'signed_at'
]
 read_only_fields = ['signed_at']

 def get_file_url(self, obj):
 """
 Возвращает URL для скачивания файла документа
 """
 if obj.file:
 request = self.context.get('request')
 if request:
 return
request.build_absolute_uri(f'/api/documents/employee/{obj.id}/download/')
 return None

 def validate_file(self, value):
 """
 Валидация загружаемого файла документа
 """
 if value:
 # Проверяем размер файла (максимум 10MB)
 if value.size > 10 * 1024 * 1024:
 raise serializers.ValidationError(
 "Размер файла не должен превышать 10MB"
)

100

 # Проверяем расширение файла

Продолжение приложения B

Продолжение листинга B.1

 allowed_extensions = ['.pdf', '.doc', '.docx', '.txt', '.rtf']
 file_extension = value.name.lower().split('.')[-1]
 if f'.{file_extension}' not in allowed_extensions:
 raise serializers.ValidationError(
 "Допустимые форматы: PDF, DOC, DOCX, TXT, RTF"
)

 return value
class DocumentGenerationSerializer(serializers.Serializer):
 """
 Сериализатор для генерации документов на основе шаблонов
 Используется в специальных эндпоинтах
 """
 template_id = serializers.IntegerField()
 employee_id = serializers.IntegerField()
 save_as_file = serializers.BooleanField(default=False)

 def validate_template_id(self, value):
 """Проверяем существование шаблона"""
 try:
 DocumentTemplate.objects.get(id=value)
 except DocumentTemplate.DoesNotExist:
 raise serializers.ValidationError("Шаблон не найден")
 return value

 def validate_employee_id(self, value):
 """Проверяем существование сотрудника"""
 from employees.models import Employee
 try:
 Employee.objects.get(id=value)
 except Employee.DoesNotExist:
 raise serializers.ValidationError("Сотрудник не найден")

 return value

documents/urls.py

URL-маршруты для API документов

from django.urls import path
from .views import (
 DocumentTemplateListCreateView, DocumentTemplateDetailView,
 EmployeeDocumentListCreateView, EmployeeDocumentDetailView,
 generate_document_from_template, download_document

)
API-маршруты для работы с документами и шаблонами
urlpatterns = [
 # Работа с шаблонами документов
 # GET /api/documents/templates/ - список шаблонов
 # POST /api/documents/templates/ - создание нового шаблона
 path('templates/', DocumentTemplateListCreateView.as_view(),
name='document-templates'),

 # Работа с конкретным шаблоном
 # GET /api/documents/templates/{id}/ - детали шаблона
 # PUT/PATCH /api/documents/templates/{id}/ - обновление шаблона

101

 # DELETE /api/documents/templates/{id}/ - удаление шаблона

Продолжение приложения B

Продолжение листинга B.1

path('templates/<int:pk>/', DocumentTemplateDetailView.as_view(),
name='document-template-detail'),

 # Работа с документами сотрудников
 # GET /api/documents/employee/ - список документов
 # POST /api/documents/employee/ - создание нового документа
 path('employee/', EmployeeDocumentListCreateView.as_view(),
name='employee-documents'),

 # Работа с конкретным документом сотрудника
 # GET /api/documents/employee/{id}/ - детали документа
 # PUT/PATCH /api/documents/employee/{id}/ - обновление документа
 # DELETE /api/documents/employee/{id}/ - удаление документа
 path('employee/<int:pk>/', EmployeeDocumentDetailView.as_view(),
name='employee-document-detail'),

 # Специальные эндпоинты
 # POST /api/documents/generate/{template_id}/{employee_id}/ - генерация
документа из шаблона
 path('generate/<int:template_id>/<int:employee_id>/',
 generate_document_from_template,
 name='generate-document'),

 # GET /api/documents/employee/{id}/download/ - скачивание файла документа
 path('employee/<int:document_id>/download/',
 download_document,
 name='download-document'),

]

documents/forms.py

Django-формы для HTML-интерфейса управления документами

from django import forms
from .models import DocumentTemplate, EmployeeDocument

from employees.models import Employee
class DocumentTemplateForm(forms.ModelForm):
 """
 Форма для создания и редактирования шаблонов документов
 Используется в HTML-интерфейсе администрирования
 """
 class Meta:
 model = DocumentTemplate
 fields = ['name', 'content']

 # Человекочитаемые названия полей
 labels = {
 'name': 'Название шаблона',
 'content': 'Содержание шаблона',
 }

 # Кастомные виджеты для улучшения UX
 widgets = {
 'name': forms.TextInput(attrs={
 'class': 'form-control',
 'placeholder': 'Например: Трудовой договор'

102

 }),
 'content': forms.Textarea(attrs={

Продолжение приложения B

Продолжение листинга B.1

 'rows': 10,
 'class': 'form-control',
 'placeholder': 'Введите текст шаблона. Используйте {full_name},
{position}, {department} для подстановки данных сотрудника'
 }),
 }

 def clean_name(self):
 """
 Валидация названия шаблона
 """
 name = self.cleaned_data.get('name')
 if name and len(name.strip()) < 3:
 raise forms.ValidationError(
 "Название шаблона должно содержать минимум 3 символа"
)
 return name.strip() if name else name

 def clean_content(self):
 """
 Валидация содержимого шаблона
 """
 content = self.cleaned_data.get('content')
 if content and len(content.strip()) < 10:
 raise forms.ValidationError(
 "Содержимое шаблона должно содержать минимум 10 символов"
)

 return content.strip() if content else content
class EmployeeDocumentForm(forms.ModelForm):
 """
 Форма для загрузки документов сотрудников
 Позволяет связать документ с сотрудником и опционально с шаблоном
 """
 class Meta:
 model = EmployeeDocument
 fields = ['employee', 'template', 'file']

 # Человекочитаемые названия полей
 labels = {
 'employee': 'Сотрудник',
 'template': 'Шаблон документа',
 'file': 'Файл документа'
 }

 # Кастомные виджеты
 widgets = {
 'employee': forms.Select(attrs={
 'class': 'form-control'
 }),
 'template': forms.Select(attrs={
 'class': 'form-control'
 }),
 'file': forms.FileInput(attrs={
 'class': 'form-control',
 'accept': '.pdf,.doc,.docx,.txt,.rtf'

103

 })
 }

Продолжение приложения B

Продолжение листинга B.1

 def __init__(self, *args, kwargs):
"""
 Инициализация формы с дополнительными настройками
 """
 super().__init__(*args, kwargs)

 # Устанавливаем пустые выборы для выпадающих списков
 self.fields['employee'].empty_label = "Выберите сотрудника"
 self.fields['template'].empty_label = "Выберите шаблон
(необязательно)"

 # Делаем поле шаблона необязательным
 self.fields['template'].required = False

 def clean_file(self):
 """
 Валидация загружаемого файла
 """
 file = self.cleaned_data.get('file')

 if file:
 # Проверяем размер файла (максимум 10MB)
 if file.size > 10 * 1024 * 1024:
 raise forms.ValidationError(
 "Размер файла не должен превышать 10MB"
)

 # Проверяем расширение файла
 allowed_extensions = ['.pdf', '.doc', '.docx', '.txt', '.rtf']
 file_extension = file.name.lower().split('.')[-1]
 if f'.{file_extension}' not in allowed_extensions:
 raise forms.ValidationError(
 "Допустимые форматы файлов: PDF, DOC, DOCX, TXT, RTF"
)

 return file
class DocumentGenerationForm(forms.Form):
 """
 Форма для генерации документов на основе шаблонов
 Позволяет выбрать шаблон и сотрудника для персонализации
 """
 template = forms.ModelChoiceField(
 queryset=DocumentTemplate.objects.all(),
 label="Шаблон документа",
 empty_label="Выберите шаблон",
 widget=forms.Select(attrs={'class': 'form-control'})
)

 employee = forms.ModelChoiceField(
 queryset=Employee.objects.all(),
 label="Сотрудник",
 empty_label="Выберите сотрудника",
 widget=forms.Select(attrs={'class': 'form-control'})

104

)

 def clean(self):

Продолжение приложения B

Продолжение листинга B.1

 """
 Валидация формы на уровне объекта
 """
 cleaned_data = super().clean()
 template = cleaned_data.get('template')
 employee = cleaned_data.get('employee')

 if template and employee:
 # Можно добавить дополнительные проверки
 # Например, проверить совместимость шаблона и сотрудника
 pass

 return cleaned_data

documents/apps.py

Конфигурация Django-приложения

from django.apps import AppConfig
class DocumentsConfig(AppConfig):
 """
 Конфигурация приложения documents
 Определяет настройки автополей и имя приложения
 """
 default_auto_field = 'django.db.models.BigAutoField'
 name = 'documents'

 verbose_name = 'Управление документами'

documents/admin.py

Регистрация моделей в административной панели

from django.contrib import admin

from .models import DocumentTemplate, EmployeeDocument
@admin.register(DocumentTemplate)
class DocumentTemplateAdmin(admin.ModelAdmin):
 """
 Конфигурация административного интерфейса для шаблонов документов
 """
 list_display = ['name', 'created_at', 'get_usage_count']
 list_filter = ['created_at']
 search_fields = ['name', 'content']
 readonly_fields = ['created_at']

 def get_usage_count(self, obj):
 """Отображает количество использований шаблона"""
 return obj.employeedocument_set.count()

 get_usage_count.short_description = 'Использований'
@admin.register(EmployeeDocument)
class EmployeeDocumentAdmin(admin.ModelAdmin):
 """
 Конфигурация административного интерфейса для документов сотрудников
 """
 list_display = ['get_employee_name', 'get_template_name', 'signed_at',
'file']
 list_filter = ['signed_at', 'template']

105

 search_fields = ['employee__full_name', 'template__name']
 readonly_fields = ['signed_at']

Продолжение приложения B

Продолжение листинга B.1

 def get_employee_name(self, obj):
 """Отображает имя сотрудника"""
 return obj.employee.full_name
 get_employee_name.short_description = 'Сотрудник'

 def get_template_name(self, obj):
 """Отображает название шаблона"""
 return obj.template.name if obj.template else '-'
 get_template_name.short_description = 'Шаблон'

Модуль analytics - HR-аналитика с машинным обучением
*Модуль для HR-аналитики с использованием машинного обучения для

предсказаний*
analytics/models.py

Модели для аналитических данных

from django.db import models
В данном модуле модели не требуются, так как аналитика работает
с данными из других модулей (employees, vacancies, documents)

и использует внешние ML-модели для предсказаний
Если потребуется хранить результаты аналитики, можно добавить модели:
class AnalyticsReport(models.Model):
"""Модель для хранения сгенерированных аналитических отчетов"""
pass

class PredictionResult(models.Model):
"""Модель для хранения результатов ML-предсказаний"""

pass

analytics/views.py

API-представления для аналитики и ML-предсказаний

from rest_framework.views import APIView
from rest_framework.response import Response
from rest_framework import status
from rest_framework.permissions import IsAuthenticated
from django.views.generic import TemplateView
from django.contrib.auth.mixins import LoginRequiredMixin
import joblib
import numpy as np
from .ml_models import predict_candidate_ranking, predict_turnover_risk
from employees.models import Employee
from vacancies.models import Vacancy, VacancyResponse

from documents.models import DocumentTemplate, EmployeeDocument
class CandidateRankingView(APIView):
 """
 API-представление для ранжирования кандидатов с помощью ML
 Использует обученную модель для оценки подходящности кандидата
 """
 permission_classes = [IsAuthenticated]

 def post(self, request):
 """
 Обрабатывает POST-запрос с характеристиками кандидата

106

 Возвращает оценку ранжирования от 0 до 1
 """
 # Получаем признаки кандидата из запроса

Продолжение приложения B

Продолжение листинга B.1

 features = request.data.get('features')

 if not features:
 return Response(
 {'error': 'Features not provided'},
 status=status.HTTP_400_BAD_REQUEST
)

 # Проверяем права доступа (только HR и админы)
 if request.user.role not in ['admin', 'hr_manager']:
 return Response(
 {'error': 'Недостаточно прав для использования ML-функций'},
 status=status.HTTP_403_FORBIDDEN
)

 try:
 # Загружаем обученную модель из файла
 model = joblib.load('candidate_ranking_model.pkl')
 except FileNotFoundError:
 return Response(
 {'error': 'Model not found. Модель не обучена.'},
 status=status.HTTP_500_INTERNAL_SERVER_ERROR
)
 except Exception as e:
 return Response(
 {'error': f'Error loading model: {str(e)}'},
 status=status.HTTP_500_INTERNAL_SERVER_ERROR
)

 try:
 # Делаем предсказание с помощью ML-модели
 ranking = predict_candidate_ranking(model, features)

 # Возвращаем результат ранжирования
 return Response({
 'ranking_score': float(ranking),
 'recommendation': self._get_ranking_recommendation(ranking),
 'features_used': features
 })

 except Exception as e:
 return Response(
 {'error': f'Prediction error: {str(e)}'},
 status=status.HTTP_500_INTERNAL_SERVER_ERROR
)

 def _get_ranking_recommendation(self, score):
 """
 Возвращает текстовую рекомендацию на основе оценки
 """
 if score >= 0.8:
 return "Отличный кандидат - рекомендуется к собеседованию"
 elif score >= 0.6:

107

 return "Хороший кандидат - стоит рассмотреть"
 elif score >= 0.4:
 return "Средний кандидат - требует дополнительной оценки"

Продолжение приложения B

Продолжение листинга B.1

 else:
 return "Кандидат не соответствует требованиям"

class TurnoverPredictionView(APIView):
 """
 API-представление для предсказания риска увольнения сотрудников
 Использует ML-модель для анализа вероятности ухода сотрудника
 """
 permission_classes = [IsAuthenticated]
 def post(self, request):
 """
 Обрабатывает POST-запрос с характеристиками сотрудника
 Возвращает риск увольнения от 0 до 1
 """
 # Получаем признаки сотрудника из запроса
 features = request.data.get('features')
 employee_id = request.data.get('employee_id')

 if not features:
 return Response(
 {'error': 'Features not provided'},
 status=status.HTTP_400_BAD_REQUEST
)

 # Проверяем права доступа (только HR и админы)
 if request.user.role not in ['admin', 'hr_manager']:
 return Response(
 {'error': 'Недостаточно прав для использования ML-функций'},
 status=status.HTTP_403_FORBIDDEN
)

 try:
 # Загружаем обученную модель для предсказания увольнений
 model = joblib.load('turnover_model.pkl')
 except FileNotFoundError:
 return Response(
 {'error': 'Turnover model not found. Модель не обучена.'},
 status=status.HTTP_500_INTERNAL_SERVER_ERROR
)
 except Exception as e:
 return Response(
 {'error': f'Error loading model: {str(e)}'},
 status=status.HTTP_500_INTERNAL_SERVER_ERROR
)

 try:
 # Делаем предсказание риска увольнения
 risk = predict_turnover_risk(model, features)

 # Получаем дополнительную информацию о сотруднике, если указан ID
 employee_info = None
 if employee_id:
 try:
 employee = Employee.objects.get(id=employee_id)
 employee_info = {

108

 'name': employee.full_name,
 'position': employee.position,
 'department': employee.department

Продолжение приложения B

Продолжение листинга B.1

 }
 except Employee.DoesNotExist:
 pass

 # Возвращаем результат предсказания
 return Response({
 'turnover_risk': float(risk),
 'risk_level': self._get_risk_level(risk),
 'recommendations': self._get_risk_recommendations(risk),
 'employee_info': employee_info,
 'features_used': features
 })

 except Exception as e:
 return Response(
 {'error': f'Prediction error: {str(e)}'},
 status=status.HTTP_500_INTERNAL_SERVER_ERROR
)

 def _get_risk_level(self, risk):
 """
 Возвращает уровень риска в текстовом виде
 """
 if risk >= 0.7:
 return "Высокий риск"
 elif risk >= 0.4:
 return "Средний риск"
 else:
 return "Низкий риск"

 def _get_risk_recommendations(self, risk):
 """
 Возвращает рекомендации на основе уровня риска
 """
 if risk >= 0.7:
 return [
 "Провести индивидуальную беседу с сотрудником",
 "Рассмотреть возможность повышения или изменения условий",
 "Проанализировать причины неудовлетворенности"
]
 elif risk >= 0.4:
 return [
 "Обратить внимание на мотивацию сотрудника",
 "Провести оценку удовлетворенности работой",
 "Рассмотреть возможности карьерного роста"
]
 else:
 return [
 "Сотрудник находится в стабильном состоянии",
 "Поддерживать текущий уровень мотивации"

]
class AnalyticsPageView(LoginRequiredMixin, TemplateView):
 """
 HTML-страница дашборда аналитики

109

 Отображает основные метрики и интерфейс для ML-функций
 """
 template_name = "analytics.html"

Продолжение приложения B

Продолжение листинга B.1

 login_url = '/accounts/login/'

 def get_context_data(self, kwargs):
 """
 Формирует контекст с аналитическими данными для дашборда
 """
 context = super().get_context_data(kwargs)

 # Проверяем права доступа к аналитике
 if self.request.user.role not in ['admin', 'hr_manager']:
 context['access_denied'] = True
 return context

 # Основная статистика
 context.update({
 # Общие метрики
 'total_employees': Employee.objects.count(),
 'total_vacancies': Vacancy.objects.count(),
 'active_vacancies':
Vacancy.objects.filter(is_archived=False).count(),
 'total_responses': VacancyResponse.objects.count(),
 'total_documents': EmployeeDocument.objects.count(),

 # Статистика по откликам
 'new_responses':
VacancyResponse.objects.filter(status='new').count(),
 'interview_responses':
VacancyResponse.objects.filter(status='interview').count(),
 'accepted_responses':
VacancyResponse.objects.filter(status='accepted').count(),
 'rejected_responses':
VacancyResponse.objects.filter(status='rejected').count(),

 # Департаменты и их размеры
 'departments': self._get_department_stats(),

 # Позиции и их популярность
 'positions': self._get_position_stats(),

 # Статистика по шаблонам документов
 'template_usage': self._get_template_usage_stats(),

 # Метрики для ML-моделей
 'ml_features_info': self._get_ml_features_info(),
 })

 return context

 def _get_department_stats(self):
 """
 Возвращает статистику по отделам
 """
 from django.db.models import Count
 return list(Employee.objects.values('department')

110

 .annotate(count=Count('id'))
 .order_by('-count')[:10])

Продолжение приложения B

Продолжение листинга B.1

 def _get_position_stats(self):
 """
 Возвращает статистику по должностям
 """
 from django.db.models import Count
 return list(Employee.objects.values('position')
 .annotate(count=Count('id'))
 .order_by('-count')[:10])

 def _get_template_usage_stats(self):
 """
 Возвращает статистику использования шаблонов документов
 """
 from django.db.models import Count
 return list(DocumentTemplate.objects.annotate(
 usage_count=Count('employeedocument')
).order_by('-usage_count')[:5])

 def _get_ml_features_info(self):
 """
 Возвращает информацию о признаках для ML-моделей
 """
 return {
 'candidate_features': [
 'education_level', # Уровень образования (1-5)
 'experience_years', # Опыт работы в годах
 'skills_match', # Соответствие навыков (0-1)
 'previous_positions', # Количество предыдущих позиций
 'age', # Возраст кандидата
],
 'turnover_features': [
 'job_satisfaction', # Удовлетворенность работой (1-5)
 'salary_level', # Уровень зарплаты (1-5)
 'years_in_company', # Лет в компании
 'promotion_frequency', # Частота повышений
 'work_life_balance', # Баланс работы и жизни (1-5)
]

 }
class AnalyticsReportView(APIView):
 """
 API-представление для генерации аналитических отчетов
 """
 permission_classes = [IsAuthenticated]

 def get(self, request):
 """
 Генерирует общий аналитический отчет
 """
 if request.user.role not in ['admin', 'hr_manager']:
 return Response(
 {'error': 'Недостаточно прав'},
 status=status.HTTP_403_FORBIDDEN
)

111

 # Собираем данные для отчета
 report_data = {
 'generated_at': timezone.now().isoformat(),

Продолжение приложения B

Продолжение листинга B.1

 'generated_by': request.user.username,

 # Основные метрики
 'metrics': {
 'employees': {
 'total': Employee.objects.count(),
 'by_department':
list(Employee.objects.values('department')
 .annotate(count=Count('id'))),
 'by_position': list(Employee.objects.values('position')
 .annotate(count=Count('id'))),
 },
 'vacancies': {
 'total': Vacancy.objects.count(),
 'active':
Vacancy.objects.filter(is_archived=False).count(),
 'archived':
Vacancy.objects.filter(is_archived=True).count(),
 },
 'responses': {
 'total': VacancyResponse.objects.count(),
 'by_status': list(VacancyResponse.objects.values('status')
 .annotate(count=Count('id'))),
 },
 },

 # Тренды (можно расширить)
 'trends': {
 'hiring_trend': 'stable', # Можно рассчитать на основе данных
 'turnover_trend': 'low', # Можно рассчитать на основе данных
 }
 }

 return Response(report_data)

analytics/urls.py

URL-маршруты для API аналитики

from django.urls import path

from .views import CandidateRankingView, TurnoverPredictionView,
AnalyticsReportView
API-маршруты для аналитики и ML-функций
urlpatterns = [
 # ML-предсказание ранжирования кандидатов
 # POST /api/analytics/candidate-ranking/
 # Body: {"features": [education_level, experience_years, skills_match,
previous_positions, age]}
 path('candidate-ranking/', CandidateRankingView.as_view(),
name='candidate-ranking'),

 # ML-предсказание риска увольнения
 # POST /api/analytics/turnover/

112

 # Body: {"features": [job_satisfaction, salary_level, years_in_company,
promotion_frequency, work_life_balance], "employee_id": 123}
 path('turnover/', TurnoverPredictionView.as_view(), name='turnover-
prediction'),

 # Генерация аналитического отчета

Продолжение приложения B

Продолжение листинга B.1

 # GET /api/analytics/report/
 path('report/', AnalyticsReportView.as_view(), name='analytics-report'),

]

analytics/ml_models.py

Модуль для работы с ML-моделями

import numpy as np
import joblib
from sklearn.linear_model import LogisticRegression
from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler

import warnings
Отключаем предупреждения для чистоты вывода

warnings.filterwarnings('ignore')
def train_candidate_ranking_model(X, y,
model_path='candidate_ranking_model.pkl'):
 """
 Обучает модель для ранжирования кандидатов

 Args:
 X: Матрица признаков кандидатов (n_samples, n_features)
 y: Целевая переменная - успешность кандидата (0/1)
 model_path: Путь для сохранения обученной модели

 Returns:
 Обученная модель

 Пример использования:
 features = [[4, 5, 0.8, 3, 28], [2, 2, 0.4, 1, 22], ...] # [образование,
опыт, соответствие навыков, кол-во позиций, возраст]
 target = [1, 0, 1, 1, 0, ...] # 1 - успешный кандидат, 0 - неуспешный
 model = train_candidate_ranking_model(features, target)
 """

 # Преобразуем в numpy массивы
 X = np.array(X)
 y = np.array(y)

 # Создаем и обучаем модель логистической регрессии
 model = LogisticRegression(
 random_state=42,
 max_iter=1000,
 solver='liblinear' # Хороший солвер для небольших датасетов
)

 # Нормализация признаков для лучшей работы модели
 scaler = StandardScaler()
 X_scaled = scaler.fit_transform(X)

113

 # Обучаем модель
 model.fit(X_scaled, y)

 # Сохраняем модель и скейлер
 model_data = {
 'model': model,

Продолжение приложения B

Продолжение листинга B.1

 'scaler': scaler,
 'feature_names': ['education_level', 'experience_years',
'skills_match', 'previous_positions', 'age']
 }

 joblib.dump(model_data, model_path)
 print(f"Модель ранжирования кандидатов сохранена в {model_path}")

 return model
def predict_candidate_ranking(model_data, candidate_features):
 """
 Предсказывает ранжирование кандидата

 Args:
 model_data: Загруженные данные модели (модель + скейлер)
 candidate_features: Список признаков кандидата [education, experience,
skills, positions, age]

 Returns:
 Вероятность успешности кандидата (от 0 до 1)

 Пример:
 features = [4, 5, 0.8, 3, 28] # Образование=4, опыт=5лет, навыки=80%,
позиций=3, возраст=28
 score = predict_candidate_ranking(model_data, features)
 """

 # Если model_data это просто модель (для обратной совместимости)
 if hasattr(model_data, 'predict_proba'):
 model = model_data
 scaler = None
 else:
 model = model_data['model']
 scaler = model_data.get('scaler')

 # Преобразуем признаки в numpy массив
 features_array = np.array([candidate_features])

 # Применяем нормализацию если есть скейлер
 if scaler:
 features_array = scaler.transform(features_array)

 # Получаем вероятность положительного класса (успешный кандидат)
 probability = model.predict_proba(features_array)[0][1]

 return probability
def train_turnover_model(X, y, model_path='turnover_model.pkl'):
 """
 Обучает модель для предсказания риска увольнения сотрудников

 Args:

114

 X: Матрица признаков сотрудников (n_samples, n_features)
 y: Целевая переменная - факт увольнения (0/1)
 model_path: Путь для сохранения обученной модели

 Returns:
 Обученная модель

Продолжение приложения B

Продолжение листинга B.1

 Пример использования:
 features = [[3, 4, 2, 0.5, 3], [5, 5, 5, 2, 4], ...] #
[удовлетворенность, зарплата, годы, повышения, баланс]
 target = [1, 0, 1, 0, ...] # 1 - уволился, 0 - остался
 model = train_turnover_model(features, target)
 """

 # Преобразуем в numpy массивы
 X = np.array(X)
 y = np.array(y)

 # Используем Random Forest для лучшего качества предсказаний
 model = RandomForestClassifier(
 n_estimators=100,
 random_state=42,
 max_depth=10,
 min_samples_split=5
)

 # Нормализация признаков
 scaler = StandardScaler()
 X_scaled = scaler.fit_transform(X)

 # Обучаем модель
 model.fit(X_scaled, y)

 # Сохраняем модель и скейлер
 model_data = {
 'model': model,
 'scaler': scaler,
 'feature_names': ['job_satisfaction', 'salary_level',
'years_in_company', 'promotion_frequency', 'work_life_balance']
 }

 joblib.dump(model_data, model_path)
 print(f"Модель предсказания увольнений сохранена в {model_path}")

 return model
def predict_turnover_risk(model_data, employee_features):
 """
 Предсказывает риск увольнения сотрудника

 Args:
 model_data: Загруженные данные модели (модель + скейлер)
 employee_features: Список признаков сотрудника [satisfaction, salary,
years, promotions, balance]

 Returns:
 Вероятность увольнения (от 0 до 1)

115

 Пример:
 features = [3, 4, 2, 0.5, 3] # Удовлетворенность=3, зарплата=4, годы=2,
повышения=0.5, баланс=3
 risk = predict_turnover_risk(model_data, features)
 """

Продолжение приложения B

Продолжение листинга B.1

 # Если model_data это просто модель (для обратной совместимости)
 if hasattr(model_data, 'predict_proba'):
 model = model_data
 scaler = None
 else:
 model = model_data['model']
 scaler = model_data.get('scaler')

 # Преобразуем признаки в numpy массив
 features_array = np.array([employee_features])

 # Применяем нормализацию если есть скейлер
 if scaler:
 features_array = scaler.transform(features_array)

 # Получаем вероятность увольнения (положительный класс)
 risk = model.predict_proba(features_array)[0][1]

 return risk
Функции для генерации тестовых данных (для демонстрации)
def generate_sample_candidate_data(n_samples=1000):
 """
 Генерирует случайные данные кандидатов для обучения модели
 Используется только для демонстрации и тестирования
 """
 np.random.seed(42)

 # Генерируем признаки
 education = np.random.randint(1, 6, n_samples) # Уровень образования 1-5
 experience = np.random.randint(0, 15, n_samples) # Опыт 0-15 лет
 skills_match = np.random.uniform(0, 1, n_samples) # Соответствие навыков
0-1
 positions = np.random.randint(0, 8, n_samples) # Количество позиций 0-8
 age = np.random.randint(20, 60, n_samples) # Возраст 20-60

 # Создаем целевую переменную на основе логики
 # Более образованные и опытные кандидаты с хорошим соответствием навыков
более успешны
 target = (
 (education >= 3) &
 (experience >= 2) &
 (skills_match >= 0.6) &
 (age <= 45)
).astype(int)

 # Добавляем немного шума
 noise = np.random.choice([0, 1], n_samples, p=[0.8, 0.2])
 target = np.logical_xor(target, noise).astype(int)

 X = np.column_stack([education, experience, skills_match, positions, age])

116

 return X, target
def generate_sample_turnover_data(n_samples=1000):
 """
 Генерирует случайные данные сотрудников для обучения модели увольнений
 Используется только для демонстрации и тестирования
 """

Продолжение приложения B

Продолжение листинга B.1

 np.random.seed(42)

 # Генерируем признаки
 satisfaction = np.random.randint(1, 6, n_samples) # Удовлетворенность 1-5
 salary = np.random.randint(1, 6, n_samples) # Уровень зарплаты 1-5
 years = np.random.randint(0, 20, n_samples) # Лет в компании 0-20
 promotions = np.random.uniform(0, 3, n_samples) # Частота повышений
 balance = np.random.randint(1, 6, n_samples) # Баланс работы/жизни 1-5

 # Создаем целевую переменную
 # Неудовлетворенные сотрудники с низкой зарплатой и плохим балансом склонны
увольняться
 target = (
 (satisfaction <= 2) |
 (salary <= 2) |
 (balance <= 2) |
 ((years >= 10) & (promotions < 0.5)) # Долго работают без повышений
).astype(int)

 # Добавляем шум
 noise = np.random.choice([0, 1], n_samples, p=[0.7, 0.3])
 target = np.logical_xor(target, noise).astype(int)

 X = np.column_stack([satisfaction, salary, years, promotions, balance])

 return X, target
Пример скрипта для первоначального обучения моделей
if __name__ == "__main__":
 print("Генерация тестовых данных и обучение моделей...")

 # Обучение модели ранжирования кандидатов
 print("\n1. Обучение модели ранжирования кандидатов...")
 X_candidates, y_candidates = generate_sample_candidate_data(1000)
 candidate_model = train_candidate_ranking_model(X_candidates,
y_candidates)

 # Обучение модели предсказания увольнений
 print("\n2. Обучение модели предсказания увольнений...")
 X_turnover, y_turnover = generate_sample_turnover_data(1000)
 turnover_model = train_turnover_model(X_turnover, y_turnover)

 print("\nМодели успешно обучены и сохранены!")

 print("Теперь можно использовать API для предсказаний.")

analytics/templatetags/analytics_extras.py

Дополнительные теги шаблонов для аналитики

from django import template

import json
Регистрируем библиотеку тегов шаблонов

register = template.Library()

117

@register.filter
def index(value, arg):
 """
 Получает элемент по индексу из списка или словаря

 Использование в шаблоне:
 {{ my_list|index:0 }} - получить первый элемент списка

Продолжение приложения B

Продолжение листинга B.1

 {{ my_dict|index:"key" }} - получить значение по ключу
 """
 try:
 return value[arg]
 except (IndexError, TypeError, KeyError):

 return None
@register.filter
def multiply(value, arg):
 """
 Умножает значение на аргумент
 Полезно для вычислений в шаблонах

 Использование:
 {{ value|multiply:100 }} - умножить на 100 (например, для процентов)
 {{ price|multiply:1.2 }} - умножить на 1.2 (например, добавить НДС)
 """
 try:
 return float(value) * float(arg)
 except (ValueError, TypeError):

 return 0
@register.filter
def percentage(value, total):
 """
 Вычисляет процентное соотношение

 Использование:
 {{ part|percentage:total }} - получить процент части от целого
 """
 try:
 if float(total) == 0:
 return 0
 return round((float(value) / float(total)) * 100, 1)
 except (ValueError, TypeError, ZeroDivisionError):

 return 0
@register.filter
def json_encode(value):
 """
 Кодирует значение в JSON для использования в JavaScript

 Использование:
 <script>
 var data = {{ my_data|json_encode }};
 </script>
 """

 return json.dumps(value)
@register.simple_tag
def risk_badge_class(risk_level):
 """
 Возвращает CSS-класс для отображения уровня риска

118

 Использование:
 {% load analytics_extras %}
 Высокий риск
 """
 risk_classes = {
 'low': 'badge-success',
 'medium': 'badge-warning',

Продолжение приложения B

Продолжение листинга B.1

 'high': 'badge-danger',
 'Низкий риск': 'badge-success',
 'Средний риск': 'badge-warning',
 'Высокий риск': 'badge-danger',
 }

 return risk_classes.get(risk_level, 'badge-secondary')
@register.simple_tag
def format_ml_score(score):
 """
 Форматирует ML-оценку для отображения

 Использование:
 {% format_ml_score 0.847 %} -> "84.7%"
 """
 try:
 return f"{float(score) * 100:.1f}%"
 except (ValueError, TypeError):

 return "N/A"
@register.inclusion_tag('analytics/chart_data.html')

def render_chart_data(chart_type, data, title=""):
 """
 Тег включения для рендеринга данных графика

 Использование:
 {% render_chart_data "pie" department_stats "Сотрудники по отделам" %}
 """
 return {
 'chart_type': chart_type,
 'data': data,
 'title': title,
 'chart_id': f"chart_{hash(str(data))}"

 }
@register.filter
def dict_get(dictionary, key):
 """
 Получает значение из словаря по ключу
 Безопасная альтернатива обращению по ключу

 Использование:
 {{ my_dict|dict_get:"key_name" }}
 """
 if isinstance(dictionary, dict):
 return dictionary.get(key)

 return None
@register.simple_tag
def analytics_status_icon(status):
 """
 Возвращает иконку для статуса в аналитике

119

 Использование:
 {% analytics_status_icon "success" %} -> <i class="fas fa-check-circle
text-success"></i>
 """
 icons = {
 'success': '<i class="fas fa-check-circle text-success"></i>',
 'warning': '<i class="fas fa-exclamation-triangle text-warning"></i>',

Продолжение приложения B

Окончание листинга B.1

 'danger': '<i class="fas fa-times-circle text-danger"></i>',
 'info': '<i class="fas fa-info-circle text-info"></i>',
 'primary': '<i class="fas fa-star text-primary"></i>',
 }
 return icons.get(status, '<i class="fas fa-circle text-muted"></i>')

Листинг B.2 – Программный код пользовательского интерфейса

base.html
Базовый шаблон с навигацией и общей структурой

<!DOCTYPE html>
<html lang="ru">
<head>
 <meta charset="UTF-8">
 <meta name="viewport" content="width=device-width, initial-scale=1.0">
 <!-- Динамический заголовок страницы -->
 <title>{% block title %}HR Platform{% endblock %}</title>

 <!-- Подключение основных стилей -->
 <link rel="stylesheet" href="/static/css/styles.css">

 <!-- Блок для дополнительных стилей на конкретных страницах -->
 {% block extra_head %}{% endblock %}
</head>
<body>
 <!-- Верхняя навигационная панель -->
 <header>
 <div class="container header-container">
 <!-- Логотип с ссылкой на главную -->
 <h1 class="logo">HR Platform</h1>

 <!-- Навигационное меню -->
 <nav>
 <ul class="nav-list">
 {% if user.is_authenticated %}
 <!-- Меню для авторизованных пользователей -->
 {{ user.username }}
 Выход
 {% else %}
 <!-- Меню для неавторизованных пользователей -->
 Вход
 Регистрация
 {% endif %}

 </nav>
 </div>
 </header>

120

 <!-- Основная область контента -->
 <div class="main-wrapper">
 {% if user.is_authenticated %}
 <!-- Боковая навигация для авторизованных пользователей -->
 <aside class="sidebar">

 Профиль

Продолжение приложения B

Продолжение листинга B.2

 Сотрудники
 Вакансии
 Документы
 Аналитика

</aside>
 {% endif %}

 <!-- Основной контент страницы -->
 <main class="container">
 <!-- Блок для контента конкретной страницы -->
 {% block content %}
 {% endblock %}
 </main>
 </div>

 <!-- Подвал сайта -->
 <footer>
 <div class="container">
 <p>© {% now "Y" %} HR Platform. Все права защищены.</p>
 </div>
 </footer>

 <!-- Подключение основных скриптов -->
 <script src="/static/js/main.js"></script>

 <!-- Блок для дополнительных скриптов на конкретных страницах -->
 {% block extra_js %}{% endblock %}
</body>
</html>

home.html
Главная страница с приветствием и статистикой

{% extends 'base.html' %}
<!-- Заголовок страницы -->
{% block title %}Главная - HR Platform{% endblock %}
{% block content %}
<!-- Приветственная секция -->
<section class="hero">
 <h2>Добро пожаловать в HR Platform</h2>
 <p>Цифровая платформа для управления кадровыми ресурсами.</p>

 {% if not user.is_authenticated %}
 <!-- Призыв к действию для неавторизованных пользователей -->
 <div class="cta">
 Зарегистрироваться
 Войти в систему
 </div>
 {% endif %}

121

</section>
{% if user.is_authenticated %}
<!-- Дашборд с основной статистикой (только для авторизованных) -->
<section class="dashboard">
 <h3>Статистика системы</h3>

 <!-- Карточки с метриками -->

Продолжение приложения B

Продолжение листинга B.2

 <div class="metrics-grid">
 <div class="metric-card">
 <h4>Сотрудники</h4>
 {{ employees_count|default:0 }}
 <p>Всего в системе</p>
 </div>
 <div class="metric-card">
 <h4>Активные вакансии</h4>
 {{ vacancies_count|default:0 }}
 <p>Открыто для подачи заявок</p>
 </div>

 <div class="metric-card">
 <h4>Документы</h4>
 {{ documents_count|default:0 }}
 <p>Шаблоны и файлы сотрудников</p>
 </div>
 </div>

 <!-- Лента недавней активности -->
 {% if recent_activity %}
 <div class="activity-feed">
 <h4>Недавняя активность</h4>
 <ul class="activity-list">
 {% for activity in recent_activity %}
 <li class="activity-item">
 <div class="activity-content">
 {{ activity.event }}

 {{ activity.status }}

 </div>
 <small class="activity-date">{{ activity.date|date:"d.m.Y H:i"
}}</small>

 {% endfor %}

 </div>
 {% endif %}
</section>
{% endif %}
{% endblock %}

registration/login.html
Страница входа в систему

{% extends 'base.html' %}
<!-- Заголовок страницы -->
{% block title %}Вход - HR Platform{% endblock %}
{% block content %}

122

<div class="card form-card">
 <h2>Вход в систему</h2>

 <!-- Отображение сообщений об ошибках -->
 {% if messages %}
 {% for message in messages %}
 <div class="alert alert-{{ message.tags }}">{{ message }}</div>

Продолжение приложения B

Продолжение листинга B.2

 {% endfor %}
 {% endif %}

 <!-- Форма входа -->
 <form method="post" action="">
 <!-- CSRF-токен для защиты от атак -->
 {% csrf_token %}

 <!-- Поле имени пользователя -->
 <div class="form-group">
 <label for="username">Имя пользователя</label>
 <input
 type="text"
 id="username"
 name="username"
 placeholder="Введите имя пользователя"
 required
 class="form-control"
 >
 </div>

 <!-- Поле пароля -->
 <div class="form-group">
 <label for="password">Пароль</label>
 <input
 type="password"
 id="password"
 name="password"
 placeholder="Введите пароль"
 required
 class="form-control"
 >
 </div>

 <!-- Кнопка отправки -->
 <button type="submit" class="btn btn-primary">Войти</button>
 </form>

 <!-- Ссылка на регистрацию -->
 <p class="small-text">
 Нет аккаунта? Зарегистрируйтесь
сейчас
 </p>
</div>
{% endblock %}

registration/signup.html
Страница регистрации нового пользователя

{% extends 'base.html' %}

123

<!-- Заголовок страницы -->
{% block title %}Регистрация - HR Platform{% endblock %}
{% block content %}
<div class="card form-card">
 <h2>Регистрация</h2>

 <!-- Форма регистрации с автоматически сгенерированными полями -->

Продолжение приложения B

Продолжение листинга B.2

 <form method="post" action="">
 <!-- CSRF-токен для защиты -->
 {% csrf_token %}

 <!-- Отображение формы через Django -->
 {{ form.as_p }}

 <!-- Кнопка отправки -->
 <button type="submit" class="btn btn-
primary">Зарегистрироваться</button>
 </form>

 <!-- Ссылка на страницу входа -->
 <p class="small-text">
 Уже есть аккаунт? Войдите в систему
 </p>
</div>
{% endblock %}

registration/profile.html
Страница профиля пользователя

{% extends "base.html" %}
<!-- Заголовок страницы -->
{% block title %}Профиль пользователя - HR Platform{% endblock %}
{% block content %}
<div class="card form-card">
 <h2>Профиль пользователя</h2>

 <!-- Информация о пользователе -->
 <div class="profile-info">
 <div class="info-group">
 <label>Имя пользователя:</label>
 {{ user.username }}
 </div>

 <div class="info-group">
 <label>Email:</label>
 {{ user.email|default:"Не указан"
}}
 </div>

 <div class="info-group">
 <label>Роль в системе:</label>
 {{ user.get_role_display }}
 </div>

 <div class="info-group">
 <label>Дата регистрации:</label>

124

 {{ user.date_joined|date:"d.m.Y"
}}
 </div>
 </div>

 <!-- Дополнительная информация для сотрудников -->
 {% if user.employee_profile %}
 <div class="employee-info">

Продолжение приложения B

Продолжение листинга B.2

 <h3>Информация о сотруднике</h3>

 <div class="info-group">
 <label>ФИО:</label>
 {{ user.employee_profile.full_name
}}
 </div>

 <div class="info-group">
 <label>Должность:</label>
 {{ user.employee_profile.position
}}
 </div>

 <div class="info-group">
 <label>Отдел:</label>
 {{ user.employee_profile.department
}}
 </div>

 <div class="info-group">
 <label>Дата приема на работу:</label>
 {{
user.employee_profile.date_hired|date:"d.m.Y" }}
 </div>
 </div>
 {% endif %}

 <!-- Кнопки действий -->
 <div class="profile-actions">
 Вернуться на
главную

 <!-- Дополнительные действия для HR и админов -->
 {% if user.role == "admin" or user.role == "hr_manager" %}
 <a href="{% url 'analytics_dashboard' %}" class="btn btn-
primary">Аналитика
 {% endif %}
 </div>
</div>
{% endblock %}

employees/list.html
Страница списка сотрудников

{% extends 'base.html' %}
<!-- Заголовок страницы -->
{% block title %}Список сотрудников - HR Platform{% endblock %}
{% block content %}

125

<div class="page-header">
 <h2>Список сотрудников</h2>

 <!-- Кнопка добавления нового сотрудника (только для HR и админов) -->
 {% if user.is_authenticated %}
 {% if user.role == "admin" or user.role == "hr_manager" %}

 Добавить сотрудника

Продолжение приложения B

Продолжение листинга B.2

 {% endif %}
 {% endif %}
</div>
<!-- Таблица сотрудников -->
<div class="table-responsive">
 <table class="data-table">
 <thead>
 <tr>
 <th>ID</th>
 <th>ФИО</th>
 <th>Дата приёма</th>
 <th>Должность</th>
 <th>Квалификация</th>
 <th>Отдел</th>

 <!-- Колонка действий только для HR и админов -->
 {% if user.is_authenticated %}
 {% if user.role == "admin" or user.role == "hr_manager" %}
 <th>Действия</th>
 {% endif %}
 {% endif %}
 </tr>
 </thead>

 <tbody>
 {% for employee in employees %}
 <tr>
 <td>{{ employee.id }}</td>

 <!-- Ссылка на детальную страницу сотрудника -->
 <td>

 {{ employee.full_name }}

 </td>

 <td>{{ employee.date_hired|date:"d.m.Y" }}</td>
 <td>{{ employee.position }}</td>
 <td>{{ employee.qualification|truncatechars:50 }}</td>
 <td>{{ employee.department }}</td>

 <!-- Действия с сотрудником (только для HR и админов) -->
 {% if user.is_authenticated %}
 {% if user.role == "admin" or user.role == "hr_manager" %}
 <td class="actions">
 <a href="{% url 'employee_update' employee.id %}" class="btn
btn-sm btn-outline">
 Редактировать

126

 <a href="{% url 'employee_delete' employee.id %}" class="btn
btn-sm btn-danger">
 Удалить

 </td>
 {% endif %}
 {% endif %}

Продолжение приложения B

Продолжение листинга B.2

 </tr>

 {% empty %}
 <!-- Сообщение при отсутствии сотрудников -->
 <tr>
 <td colspan="7" class="text-center">
 Сотрудники не найдены.
 </td>
 </tr>
 {% endfor %}
 </tbody>
 </table>
</div>
<!-- Пагинация (если необходимо) -->
{% if employees.has_other_pages %}
<nav class="pagination-nav">
 <ul class="pagination">
 {% if employees.has_previous %}
 «
Предыдущая
 {% endif %}

 <li class="current">
 Страница {{ employees.number }} из {{
employees.paginator.num_pages }}

 {% if employees.has_next %}
 Следующая
»
 {% endif %}

</nav>
{% endif %}
{% endblock %}

employees/detail.html
Детальная страница сотрудника

{% extends 'base.html' %}
<!-- Заголовок страницы -->
{% block title %}Профиль сотрудника - HR Platform{% endblock %}
{% block content %}
<div class="employee-detail">
 <!-- Заголовок с именем сотрудника -->
 <div class="page-header">
 <h2>Профиль сотрудника: {{ employee.full_name }}</h2>

 <!-- Кнопки действий (только для HR и админов) -->

127

 {% if user.is_authenticated %}
 {% if user.role == "admin" or user.role == "hr_manager" %}
 <div class="actions">
 <a href="{% url 'employee_update' employee.id %}" class="btn
btn-primary">
 Редактировать

Продолжение приложения B

Продолжение листинга B.2

 <a href="{% url 'employee_delete' employee.id %}" class="btn
btn-danger">
 Удалить

 </div>
 {% endif %}
 {% endif %}
 </div>

 <!-- Карточка с информацией о сотруднике -->
 <div class="card employee-info-card">
 <h3>Основная информация</h3>
 <div class="info-grid">
 <div class="info-item">
 <label>ФИО:</label>
 {{ employee.full_name }}
 </div>

 <div class="info-item">
 <label>Дата приёма на работу:</label>
 {{ employee.date_hired|date:"d.m.Y" }}
 </div>

 <div class="info-item">
 <label>Стаж работы:</label>
 {{ employee.get_years_of_service }} лет
 </div>

 <div class="info-item">
 <label>Должность:</label>
 {{ employee.position }}
 </div>

 <div class="info-item">
 <label>Отдел:</label>
 {{ employee.department }}
 </div>

 <div class="info-item full-width">
 <label>Квалификация:</label>
 <div class="qualification-text">
 {{ employee.qualification|linebreaks }}
 </div>
 </div>

 {% if employee.history %}
 <div class="info-item full-width">
 <label>История изменений:</label>
 <div class="history-text">

128

 {{ employee.history|linebreaks }}
 </div>
 </div>
 {% endif %}
 </div>
 </div>

 <!-- Связанная информация -->

Продолжение приложения B

Продолжение листинга B.2

 {% if user.role == "admin" or user.role == "hr_manager" %}
 <div class="related-info">
 <!-- Документы сотрудника -->
 {% if employee.documents.all %}
 <div class="card">
 <h3>Документы сотрудника</h3>
 <ul class="document-list">
 {% for document in employee.documents.all %}
 <li class="document-item">

 {{ document.template.name|default:"Документ" }}

 <small>({{ document.signed_at|date:"d.m.Y" }})</small>

 {% endfor %}

 </div>
 {% endif %}

 <!-- Связанный пользователь -->
 {% if employee.user %}
 <div class="card">
 <h3>Учетная запись</h3>
 <div class="user-info">
 <p>Пользователь: {{ employee.user.username
}}</p>
 <p>Email: {{ employee.user.email|default:"Не
указан" }}</p>
 <p>Роль: {{ employee.user.get_role_display
}}</p>
 <p>Дата регистрации: {{
employee.user.date_joined|date:"d.m.Y" }}</p>
 </div>
 </div>
 {% endif %}
 </div>
 {% endif %}

 <!-- Навигация -->
 <div class="navigation">

 ← Назад к списку сотрудников

 </div>
</div>
{% endblock %}
<!-- Дополнительные стили для страницы -->
{% block extra_head %}
<style>

129

.employee-detail {
 max-width: 1000px;
 margin: 0 auto;
}
.info-grid {
 display: grid;
 grid-template-columns: 1fr 1fr;
 gap: 1rem;

Продолжение приложения B

Продолжение листинга B.2

 margin-top: 1rem;
}
.info-item {
 display: flex;
 flex-direction: column;
 gap: 0.25rem;
}
.info-item.full-width {
 grid-column: 1 / -1;
}
.info-item label {
 font-weight: bold;
 color: #666;
 font-size: 0.9rem;
}
.qualification-text,
.history-text {
 background: #f8f9fa;
 padding: 1rem;
 border-radius: 4px;
 border-left: 4px solid #007bff;
}
.document-list {
 list-style: none;
 padding: 0;
}
.document-item {
 padding: 0.5rem 0;
 border-bottom: 1px solid #eee;
}
.document-item:last-child {
 border-bottom: none;
}
.related-info {
 margin-top: 2rem;
 display: grid;
 grid-template-columns: 1fr 1fr;
 gap: 2rem;
}
@media (max-width: 768px) {
 .info-grid {
 grid-template-columns: 1fr;
 }

 .related-info {
 grid-template-columns: 1fr;
 }
}
</style>

130

{% endblock %}

employees/employee_form.html
Форма создания/редактирования сотрудника

{% extends 'base.html' %}
<!-- Динамический заголовок в зависимости от режима -->
{% block title %}

Продолжение приложения B

Продолжение листинга B.2

{% if object %}Редактировать сотрудника{% else %}Добавить сотрудника{% endif
%} - HR Platform
{% endblock %}
{% block content %}
<div class="card form-card">
 <!-- Заголовок формы -->
 <h2>
 {% if object %}
 Редактировать сотрудника: {{ object.full_name }}
 {% else %}
 Добавить нового сотрудника
 {% endif %}
 </h2>

<!-- Форма сотрудника -->
 <form method="post" class="employee-form">
 <!-- CSRF-токен для защиты -->
 {% csrf_token %}

 <!-- Отображение ошибок формы -->
 {% if form.errors %}
 <div class="alert alert-danger">
 <h4>Пожалуйста, исправьте следующие ошибки:</h4>
 {{ form.errors }}
 </div>
 {% endif %}

 <!-- Поля формы -->
 <div class="form-grid">
 <!-- Связанный пользователь -->
 <div class="form-group">
 <label for="{{ form.user.id_for_label }}">{{ form.user.label
}}</label>
 {{ form.user }}
 {% if form.user.help_text %}
 <small class="help-text">{{ form.user.help_text }}</small>
 {% endif %}
 </div>

 <!-- ФИО -->
 <div class="form-group">
 <label for="{{ form.full_name.id_for_label }}">{{
form.full_name.label }}</label>
 {{ form.full_name }}
 {% if form.full_name.errors %}
 <div class="field-errors">{{ form.full_name.errors }}</div>
 {% endif %}
 </div>

131

 <!-- Дата приема -->
 <div class="form-group">
 <label for="{{ form.date_hired.id_for_label }}">{{
form.date_hired.label }}</label>
 {{ form.date_hired }}
 {% if form.date_hired.errors %}
 <div class="field-errors">{{ form.date_hired.errors }}</div>

Продолжение приложения B

Продолжение листинга B.2

 {% endif %}
 </div>

 <!-- Должность -->
 <div class="form-group">
 <label for="{{ form.position.id_for_label }}">{{
form.position.label }}</label>
 {{ form.position }}
 {% if form.position.errors %}
 <div class="field-errors">{{ form.position.errors }}</div>
 {% endif %}
 </div>

 <!-- Отдел -->
 <div class="form-group">
 <label for="{{ form.department.id_for_label }}">{{
form.department.label }}</label>
 {{ form.department }}
 {% if form.department.errors %}
 <div class="field-errors">{{ form.department.errors }}</div>
 {% endif %}
 </div>

 <!-- Квалификация (полная ширина) -->
 <div class="form-group full-width">
 <label for="{{ form.qualification.id_for_label }}">{{
form.qualification.label }}</label>
 {{ form.qualification }}
 {% if form.qualification.errors %}
 <div class="field-errors">{{ form.qualification.errors
}}</div>
 {% endif %}
 <small class="help-text">
 Опишите образование, навыки, сертификаты и опыт работы
сотрудника
 </small>
 </div>
 </div>

 <!-- Кнопки действий -->
 <div class="form-actions">
 <button type="submit" class="btn btn-primary">
 {% if object %}Сохранить изменения{% else %}Создать сотрудника{%
endif %}
 </button>

 Отмена

 </div>

132

 </form>
</div>
{% endblock %}
<!-- Дополнительные стили для формы -->
{% block extra_head %}
<style>
.employee-form {
 max-width: 800px;

Продолжение приложения B

Продолжение листинга B.2

 margin: 0 auto;
}
.form-grid {
 display: grid;
 grid-template-columns: 1fr 1fr;
 gap: 1.5rem;
 margin-bottom: 2rem;
}
.form-group.full-width {
 grid-column: 1 / -1;
}
.form-group label {
 display: block;
 margin-bottom: 0.5rem;
 font-weight: bold;
 color: #333;
}
.form-group input,
.form-group select,
.form-group textarea {
 width: 100%;
 padding: 0.75rem;
 border: 1px solid #ddd;
 border-radius: 4px;
 font-size: 1rem;
}
.form-group textarea {
 resize: vertical;
 min-height: 100px;
}
.help-text {
 display: block;
 margin-top: 0.25rem;
 color: #666;
 font-size: 0.875rem;
}
.field-errors {
 color: #dc3545;
 font-size: 0.875rem;
 margin-top: 0.25rem;
}
.form-actions {
 display: flex;
 gap: 1rem;
 justify-content: flex-start;
 padding-top: 1rem;
 border-top: 1px solid #eee;
}

133

@media (max-width: 768px) {
 .form-grid {
 grid-template-columns: 1fr;
 }

 .form-actions {
 flex-direction: column;
 }

Продолжение приложения B

Продолжение листинга B.2

}
</style>
{% endblock %}

employees/employee_confirm_delete.html
Страница подтверждения удаления сотрудника

{% extends 'base.html' %}
<!-- Заголовок страницы -->
{% block title %}Удалить сотрудника - HR Platform{% endblock %}
{% block content %}
<div class="card form-card delete-confirmation">
 <!-- Заголовок с предупреждением -->
 <div class="warning-header">

 <h2>��� Удалить сотрудника</h2>
 </div>

 <!-- Информация об удаляемом сотруднике -->
 <div class="employee-summary">
 <h3>{{ object.full_name }}</h3>
 <div class="employee-details">
 <p>Должность: {{ object.position }}</p>
 <p>Отдел: {{ object.department }}</p>
 <p>Дата приема: {{ object.date_hired|date:"d.m.Y"
}}</p>
 </div>
 </div>

 <!-- Предупреждение об удалении -->
 <div class="warning-message">
 <p>
 Внимание! Вы уверены, что хотите удалить сотрудника
 "{{ object.full_name }}"?
 </p>

 <div class="consequences">
 <p>Это действие приведет к:</p>

 Удалению всех данных о сотруднике
 Удалению связанных документов
 Невозможности восстановления информации

 </div>
 </div>

 <!-- Форма подтверждения удаления -->
 <form method="post" class="delete-form">
 <!-- CSRF-токен -->
 {% csrf_token %}

134

 <!-- Кнопки действий -->
 <div class="form-actions">
 <button type="submit" class="btn btn-danger">

 ✓ Подтвердить удаление
 </button>

 ✕ Отмена

Продолжение приложения B

Продолжение листинга B.2

 </div>
 </form>
</div>
{% endblock %}
<!-- Дополнительные стили для страницы удаления -->
{% block extra_head %}
<style>
.delete-confirmation {
 max-width: 600px;
 margin: 2rem auto;
 border: 2px solid #dc3545;
}
.warning-header {
 background-color: #f8d7da;
 margin: -1rem -1rem 1rem -1rem;
 padding: 1rem;
 border-bottom: 1px solid #dc3545;
}
.warning-header h2 {
 margin: 0;
 color: #721c24;
}
.employee-summary {
 background-color: #f8f9fa;
 padding: 1rem;
 border-radius: 4px;
 margin-bottom: 1rem;
}
.employee-summary h3 {
 margin: 0 0 1rem 0;
 color: #495057;
}
.employee-details p {
 margin: 0.25rem 0;
 color: #6c757d;
}
.warning-message {
 margin: 1.5rem 0;
}
.consequences {
 background-color: #fff3cd;
 border: 1px solid #ffeaa7;
 border-radius: 4px;
 padding: 1rem;
 margin-top: 1rem;
}
.consequences ul {

135

 margin: 0.5rem 0 0 1rem;
 color: #856404;
}
.consequences li {
 margin: 0.25rem 0;
}
.delete-form {
 border-top: 1px solid #dee2e6;

Окончание приложения B

Окончание листинга B.2

 padding-top: 1rem;
}
.form-actions {
 display: flex;
 gap: 1rem;
 justify-content: center;
}
.btn-danger {
 background-color: #dc3545;
 border-color: #dc3545;
 color: white;
}
.btn-danger:hover {
 background-color: #c82333;
 border-color: #bd2130;
}
@media (max-width: 768px) {
 .form-actions {
 flex-direction: column;
 }
}

136

ПРИЛОЖЕНИЕ C

РУКОВОДСТВО ПОЛЬЗОВАТЕЛЯ HR-ПЛАТФОРМЫ

1. РЕГИСТРАЦИЯ И ВХОД В СИСТЕМУ

1.1 Регистрация нового пользователя

Для регистрации в системе необходимо выполнить следующие шаги:

1. На главной странице сайта нажмите кнопку «Регистрация» в правом

верхнем углу.

2. Заполните форму регистрации:

 - Логин (имя пользователя)

 - Электронная почта

 - Пароль (не менее 8 символов)

 - Подтверждение пароля

3. Нажмите кнопку «Зарегистрироваться».

4. На указанную электронную почту будет отправлено письмо для

подтверждения регистрации.

5. Перейдите по ссылке из письма для активации аккаунта.

1.2 Вход в систему

Для входа в систему выполните следующие действия:

1. На главной странице нажмите кнопку «Вход» в правом верхнем углу.

2. Введите имя пользователя и пароль.

3. Нажмите кнопку «Войти».

2. ФУНКЦИИ ДЛЯ РАЗНЫХ РОЛЕЙ ПОЛЬЗОВАТЕЛЕЙ

2.1 Администратор

Администратор имеет доступ ко всем функциям системы:

- Управление пользователями (создание, редактирование, блокировка)

137

Продолжение приложения C

- Управление ролями и правами доступа

- Создание и редактирование отделов компании

- Настройка системных параметров

- Доступ ко всем аналитическим отчетам

- Управление шаблонами документов

- Полный доступ к управлению вакансиями

Для доступа к панели администратора:

1. Войдите в систему с учетной записью администратора

2. В главном меню выберите пункт «Администрирование»

2.2 HR-менеджер

HR-менеджер имеет доступ к следующим функциям:

- Управление профилями сотрудников

- Управление вакансиями (создание, редактирование, закрытие)

- Обработка откликов кандидатов

- Доступ к HR-аналитике

- Работа с документами (создание, редактирование, генерация)

Для работы с сотрудниками:

1. В главном меню выберите пункт «Сотрудники»

2. Используйте фильтры для поиска нужного сотрудника

3. Нажмите на имя сотрудника для просмотра или редактирования

профиля

2.3 Сотрудник

Сотрудник имеет доступ к следующим функциям:

- Просмотр и редактирование собственного профиля

- Просмотр доступных вакансий компании

138

Продолжение приложения C

- Просмотр и скачивание своих документов

- Просмотр базовой информации о компании и коллегах

Для просмотра своего профиля:

1. В главном меню выберите пункт «Мой профиль»

2. Для редактирования информации нажмите кнопку «Редактировать»

2.4 Кандидат

Кандидат имеет доступ к следующим функциям:

- Просмотр доступных вакансий

- Подача откликов на вакансии

- Загрузка резюме и сопроводительных писем

- Просмотр статуса своих откликов

Для поиска вакансий:

1. В главном меню выберите пункт «Вакансии»

2. Используйте фильтры для поиска подходящих вакансий

3. Нажмите на название вакансии для просмотра подробной информации

3. РАБОТА С ВАКАНСИЯМИ

3.1 Создание новой вакансии (для HR-менеджера)

1. В главном меню выберите пункт «Вакансии».

2. Нажмите кнопку «Создать вакансию».

3. Заполните форму создания вакансии:

 - Название должности

 - Описание вакансии

 - Требования к кандидату

 - Условия работы

139

Продолжение приложения C

 - Дата закрытия вакансии (опционально)

4. Нажмите кнопку «Сохранить».

3.2 Редактирование вакансии

1. В списке вакансий найдите нужную вакансию.

2. Нажмите кнопку «Редактировать» рядом с вакансией.

3. Внесите необходимые изменения.

4. Нажмите кнопку «Сохранить».

3.3 Архивирование вакансии

1. В списке вакансий найдите нужную вакансию.

2. Нажмите кнопку «Архивировать».

3. Подтвердите действие в диалоговом окне.

3.4 Подача отклика на вакансию (для кандидата)

1. В списке вакансий найдите интересующую вакансию.

2. Нажмите на название вакансии для просмотра подробной

информации.

3. Нажмите кнопку «Откликнуться».

4. Заполните форму отклика:

 - Загрузите резюме (в формате PDF или DOC)

 - Напишите сопроводительное письмо

5. Нажмите кнопку «Отправить отклик».

3.5 Управление откликами (для HR-менеджера)

1. В главном меню выберите пункт «Отклики».

2. Используйте фильтры для поиска откликов по вакансиям или

статусам.

3. Нажмите на отклик для просмотра подробной информации.

140

Продолжение приложения C

4. Для изменения статуса отклика:

 - Выберите новый статус из выпадающего списка

 - Добавьте комментарий (опционально)

 - Нажмите кнопку «Сохранить»

4. УПРАВЛЕНИЕ ДОКУМЕНТАМИ

4.1 Создание шаблона документа (для HR-менеджера)

1. В главном меню выберите пункт «Документы».

2. Перейдите на вкладку «Шаблоны».

3. Нажмите кнопку «Создать шаблон».

4. Заполните форму создания шаблона:

 - Название шаблона

 - Содержание шаблона (используйте переменные в формате

{переменная} для автоматической подстановки данных)

 - Или загрузите файл шаблона (DOCX)

5. Нажмите кнопку «Сохранить».

4.2 Поиск и просмотр документов

1. В главном меню выберите пункт «Документы».

2. Нажмите на название документа для просмотра.

3. Для скачивания документа нажмите кнопку «Скачать».

5. АНАЛИТИЧЕСКИЕ ОТЧЕТЫ

5.1 Доступные типы отчетов

В системе доступны следующие типы отчетов:

- Отчет по вакансиям

141

Продолжение приложения C

 - Статистика по открытым/закрытым вакансиям

 - Среднее время закрытия вакансий

 - Отчет по сотрудникам

 - Статистика по численности персонала

 - Распределение сотрудников по отделам

 - Анализ текучести кадров

- Отчет по эффективности источников найма

 - Количество откликов по каналам привлечения

 - Процент успешных наймов по каналам

 - Стоимость привлечения кандидатов

- Прогнозный отчет

 - Прогноз текучести кадров

 - Анализ рисков увольнения

 - Прогноз сроков закрытия вакансий

5.2 Формирование и экспорт отчетов

1. В главном меню выберите пункт «Аналитика».

2. Выберите тип отчета из списка.

3. Для экспорта отчета нажмите кнопку «Экспорт» и выберите формат

(Excel или PDF).

5.3 Интерпретация результатов

- Графики и диаграммы

 - Столбчатые диаграммы показывают сравнение значений по

категориям

 - Линейные графики отображают изменение значений во времени

 - Круговые диаграммы демонстрируют процентное соотношение

142

Окончание приложения C

- Прогнозные модели

 - Цветовая индикация (зеленый/желтый/красный) показывает уровень

риска

 - Числовые значения указывают на вероятность события в процентах

 - Временные прогнозы указывают ожидаемые сроки в днях

6. НАСТРОЙКИ ПРОФИЛЯ И ВЫХОД ИЗ СИСТЕМЫ

6.1 Изменение настроек профиля

1. В правом верхнем углу нажмите на профиль.

2. Внесите необходимые изменения в данные профиля.

3. Для изменения пароля введите текущий пароль и новый пароль.

4. Нажмите кнопку «Сохранить».

6.2 Выход из системы

1. В правом верхнем углу выберите пункт «Выход».

2. Система завершит сеанс работы и перенаправит вас на страницу входа.

