Министерство науки и высшего образования Российской Федерации Федеральное государственное автономное образовательное учреждение высшего образования

«Южно-Уральский государственный университет (национальный исследовательский университет)» Высшая школа электроники и компьютерных наук Кафедра «Электронные вычислительные машины»

Разработка системы мониторинга давления в шинах легкового автомобиля (стартап как диплом)

Научный руководитель:

к.п.н., доцент каф. ЭВМ Алтухова Мария Александровна **Консультант:**

к.э.н., доцент каф. ЭиФ Бутрина Юлия Владимировна

Автор:

студент группы КЭ-406 Чекрыгин Павел Александрович

Актуальность

В отечественном сегменте рынка существует большое количество автомобилей, не имеющих в своей комплектации систему мониторинга давления в шинах (СМДШ). Стоит заметить, что не только отечественные автомобили, но и некоторые иномарки не обладают данной системой.

Цель

Исследование и разработка косвенной системы мониторинга давления в шинах, работающей на основе данных, полученных из CAN-шины автомобиля при помощи диагностического сканера (то есть на основе не прямого измерения давления в колесе, а через различные вычислительные операции).

Задачи

- 1) анализ предметной области;
- 2) разработка алгоритма определения спущенного колеса;
- 3) разработка мобильного приложения;
- 4) проведение исследовательских испытаний, тестирование;
- 5) стартап-проект.

Анализ предметной области

В ходе анализа рассмотрены существующие технологии СМДШ (прямого и косвенного принципа действия), выявлена возможность разработать продукт, выполняющий мониторинг давления в шинах косвенным путем. Указаны ограничения разрабатываемой системы:

- подходят не все электронные блоки (ЭБУ) автомобилей;
- подходят не все типы автомобилей (только легковые, без блокировки дифференциала).

Анализ предметной области

Разрабатываемая система мониторинга давления в шинах — косвенного типа, так как высчитывает давление в колесах не напрямую, а через внутренние системы автомобиля.

Данный тип системы менее точный, чем система прямого типа, но для его работы не требуются манометрические датчики, его исполнение ниже по цене, а автосканер можно использовать в разных целях.

Разработка алгоритмов

Алгоритм сравнения: позволит вывести информацию, обладая лишь скоростями вращения колес.

Осевой признак	Диагональный признак		
$z_0 = \frac{\omega_1}{\omega_2} - \frac{\omega_4}{\omega_3} (1)$	$z_d = \frac{\omega_2}{\omega_4} - \frac{\omega_1}{\omega_3} (2)$		

 ω_1 — угловая скорость вращения переднего левого колеса, рад/с; ω_2 — угловая скорость вращения переднего правого колеса, рад/с;

 ω_3 – угловая скорость вращения заднего правого колеса, рад/с;

 ω_4 – угловая скорость вращения заднего левого колеса, рад/с.

Разработка алгоритмов

Алгоритм расчета: имея скорость автомобиля, угловую скорость вращения колеса можно получить его расчетный диаметр, чтобы сравнить с диаметром колеса и сделать выводы.

$$V = d * \pi * \omega (3)$$

d – диаметр колеса, мм;

 π – число Пи;

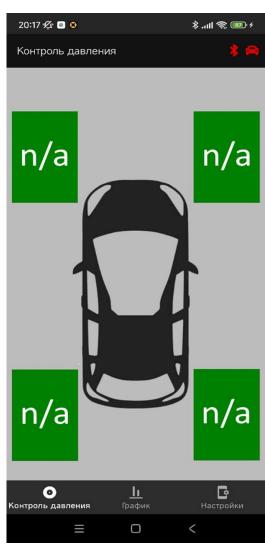
V – скорость автомобиля, м/с;

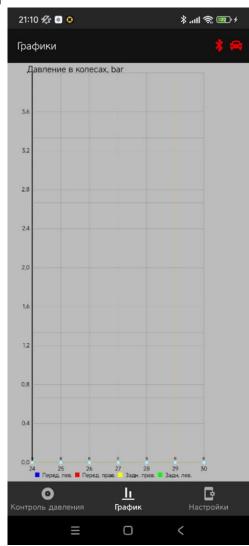
 ω – угловая скорость колеса, рад/с.

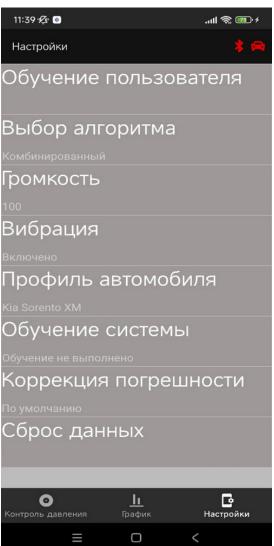
Анализ требований

Функциональные:

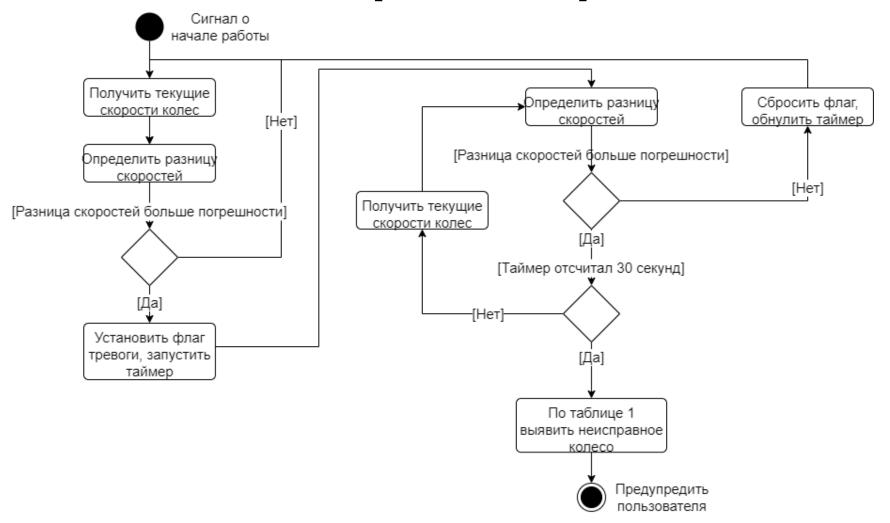
- вывод приблизительных значений давления колёс на экран;
- звуковое и вибрационное предупреждение в случае падения давления на определенный уровень;
- коррекция уровня поднятия тревоги;
- математические операции выполняются на смартфоне;
- отображение графиков давления по времени для каждого из колёс;
- возможность «обучить» систему;
- обучение для пользователя.

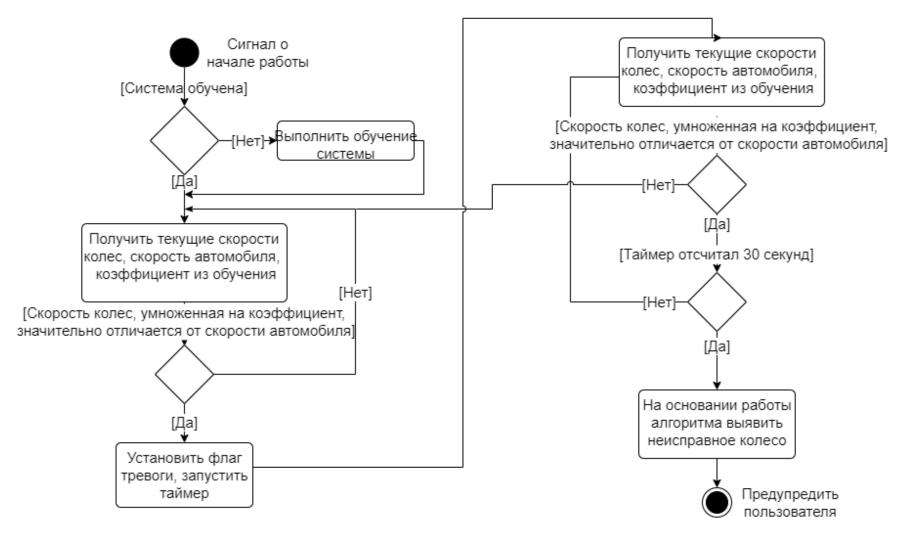

Нефункциональные:


- совместимость с операционной системой (OC) Android 9 и выше;
- адаптация интерфейса под различные разрешения экранов;
- поддержка работы в фоновом режиме;
- невысокие системные требования (до 128 МБ ОЗУ и 256 МБ общей памяти).


Средства разработки

- среда разработки Android Studio,
- операционная система Android 9+;
- язык программирования Kotlin.


Приложение



Работа алгоритма сравнения

Работа алгоритма расчета

Исследовательские испытания

Испытания проводились в условиях движения по городу с соблюдением правил дорожного движения (следовательно, скорость движения не превышала 60 км/ч) по замкнутой траектории, общая протяженность участка составила 4,9 км.

No	P ₁	P ₂	P ₃	P ₄	Алгоритм	Время	P _{1*}	P _{2*}	P _{3*}	P _{4*}
						отклика				
1	2,4	2,4	2,4	2,4	Комб.	-	2,2	2,3	2,4	2,3
2	2,4	2,0	2,4	2,4	Комб.	-	2,3	2,1	2,3	2,4
3	1,7	1,7	2,4	2,4	Комб.	73	1,7	1,6	2,4	2,4
4	1,7	2,4	2,4	2,4	Сравн.	22	I	ı	I	-
5	1,2	2,4	2,4	2,4	Комб.	11	1,2	2,3	2,4	2,3
6	1,2	2,4	2,4	2,4	Сравн.	12	_	-	-	_
7	1,2	1,2	2,4	2,4	Сравн.	ı	-	-	-	-

Функциональное тестирование

Действие	Результат	Тест
		пройден?
Пользователь впервые	Появляется экран с обучением	Да
зашел в приложение		
Пользователь начинает	Система выводит приблизительные	Да
поездку	значения давления в колесах	
Колесо спущено (до 1,7	Система подает звуковой и	Да
бар), пользователь	вибрационный сигнал	
начинает поездку	пользователю	
Пользователь смотрит	На экране с графиком отображается	Да
историю изменений	усредненная информация по дням	
давления	об изменениях давления	
Пользователь	Система изменяет уровень	Да
корректирует уровень	чувствительности	
тревоги		
Пользователь впервые	Система выполняет обучающую	Да
запускает мониторинг	поездку	

Нефункциональное тестирование

В начале работы над приложением Android Studio был выбран API 28 «Ріе», работающий на устройствах с ОС Android 9 и выше.

За счет использования взаимного расположения объектов и векторных изображений разрешение экрана адаптивно.

Благодаря использованию сервисов приложение работает в фоновом режиме.

Приложение не имеет высоких вычислительных задач, занимает 78 МБ хранилища, 39 МБ ОЗУ.

СТАРТАП-ПРОЕКТ

У приложения не найдено аналогов - ни одно популярное приложение не выполняет мониторинг давления через автомобильный сканер.

Товары-субституты дороже нашего решения, а также точнее.

SWOT-анализ

Сильные стороны	Слабые стороны		
Ежемесячная модель монетизации	Продукт находится на ранней стадии		
	разработки		
-	Нет большей части производственной		
	команды		
_	Не было продвижения		
_	У продукта нет продаж		
Возможности	Угрозы		
Обширный ассортимент	Присутствие сильных субститутов		
поставщиков программного			
обеспечения			
Отсутствие конкурентов	Ограничения зарубежных магазинов		
	приложений		
Субституты дороже и менее	Введение государством обязательной		
универсальны	сертификации на СМДШ		
Средний порог входа в отрасль	-		
Наличие спроса на подобную	_		
систему			

Решения

После формирования SWOT-таблицы и анализа проблемных полей был составлен рейтинг решений.

Ранг	Наименование	Сумма
1	Старт маркетинговой стратегии	34
2	Ускорение реализации продукта	25
3	Увеличение команды проекта	23
4	Повышение качества продукта	16
5	Открытие компании	14

Основные экономические показатели

Показатели эффективности (горизонт расчета проекта – 18 месяцев):

- чистый приведенный доход 342 тыс. руб.;
- индекс доходности 1,19.;
- срок окупаемости проекта 16 месяцев.;
- потребность в финансировании 1 770 тыс. рублей.

Заключение

В ходе анализа предметной области были рассмотрены существующие технологии СМДШ и их принципы работы, определено основное направление разработки.

В разделе разработки алгоритма определения спущенного колеса были описаны принципы действия алгоритмов сравнения и расчета для дальнейшей работы с ними.

Было спроектировано и разработано мобильное приложение, осуществляющее подключение к определенному автомобилю и позволяющее проводить мониторинг давления в колесах через автомобильный сканер.

Приложение было протестировано, выявлены замечания для последующей разработки приложения, все требования, указанные во время проектирования, были выполнены.

В ходе стартап-проекта был проведен обширный стратегический анализ продукта, выявлены приоритетные направления для повышения успеха при выходе на рынок, предоставлена общая информация о проекте.

Спасибо за внимание!