

MINISTRY OF SCIENCE AND HIGHER EDUCATION OF THE RUSSIAN

FEDERATION Federal State Autonomous Educational Institution of Higher Education

"South Ural State University (National Research University)"

School of Electrical Engineering and Computer Science

Department of Computer Engineering

"MISUSE ATTACK DETECTION BASED ON DATA MINING IN NETWORK FUNCTIONS VIRTUALIZATION"

for the master graduate qualification work of

A student of the group KE-228: N . J. AL-Dulaimi

Supervisor: D.V. Topolsky, PhD, Associate Professor

Introduction

This project involves the creation of an efficient model that allows you to run data mining algorithms to detect malicious attacks on Network Functions Virtualization (NFV).

Relevance and Novelty

Due to the growing size of internet of things IoT networks and the increased data intake that comes with it, a Network Function Virtualization (NFV) system offers the best security solution in terms of combating complexity .This project aims to proposing an early and accurate Misuse attack detection model to protect the NFV environment based on the most common and efficient data mining techniques.

Tasks necessary to achieve the goal:

1. Analyzing the Analogues of Detection Models.

2. Analyzing technological solutions to use to solve the problem.

3.Design a model architecture for Misuse Attack Detection.

4. Training the Misuse Attack Detection Model .

5. Testing the model - confusion matrix

6.Test the library and provide an example implementation of the interfaces.

7. Testing the Misuse Attack Detection model .

Task1:Analyzing the Analogues of Detection Model

- Parallel Misuse and Anomaly Detection Model
- Self-Adaptive Misuse Detection Model
- Extract Rules Of Misuse Attack Detections Models

Task2:Technological Solutions

- CAID-DDoS Attack Dataset
- TansorFlow
- Pandas
- NumPy Array
- Programming Technologies

Task3:Architecture Design

a) One Hot Encoding

b) Stander Scaler Data

- c) Misuse Attack Classification
- 1. Random Forest Model

2. C4.5 Decision Tree Model

3. Linear Support Vector Classification Model

Task 5: Testing the model - confusion matrix

a) Random Forest Algorithm

b) C 4.5 Tree Algorithm

c) Linear SVC Algorithm

Task 5: Testing the model - confusion matrix

Task 6:Test the library and provide an example implementation of the interfaces

• Implementation of the Training Interface

Traing System Testing System Load Data Set Step1 Load Data Set Step2 Preprocessing Data One-Hot Encoding Protocol_icmp Protocol_tcp Service_IRC Service_X11 Service_Z39_50 1 2 Step2 Preprocessing Data One-Hot Encoding Protocol_icmp Protocol_tcp Service_IRC Service_X11 Service_Z39_50 1 2 Step2 Preprocessing Data One-Hot Encoding Protocol_icmp Protocol_tcp Service_IRC Service_X11 Service_Z39_50 1 2 Step3 Do Classify Step4 Evaluation Performance	Dialog - [Pre	view] - Qt Designer					?
Load Data Set Step1 Load Data Set Step2 Preprocessing Data One-Hot Encoding Protocol_icmp Protocol_tcp service_IRC service_X11 service_Z39_50 Step2 Preprocessing Data One-Hot Encoding Protocol_icmp Protocol_tcp service_IRC service_X11 service_Z39_50 Step2 Preprocessing Data One-Hot Encoding Protocol_icmp Protocol_tcp service_IRC service_X11 service_Z39_50 Step3 Do Classify Step4 Evaluation Performance	Fraing System	Testing System					
Step2 Preprocessing Data One-Hot Encoding Protocol_icmp Protocol_tcp service_IRC service_X11 service_Z39_50 1 2 Step2 Preprocessing Data One-Hot Encoding Protocol_icmp Protocol_tcp service_IRC service_X11 service_Z39_50 Step2 Preprocessing Data One-Hot Encoding Protocol_icmp Protocol_tcp service_IRC service_X11 service_Z39_50 1 2 Step3 Do Classify Step4 Evaluation Performance	Load Data Set		Step1 Load Data Set				
Step2 Preprocessing Data One-Hot Encoding Protocol_icmp Protocol_tcp service_IRC service_X11 service_Z39_50 1 2	Step2 Preprocessing Data One-Hot Encoding		Protocol_icmp 1 2	Protocol_tcp	service_IRC	service_X11	service_Z39_50
Step3 Do Classify Step4 Evaluation Performance	Step2 Preprocessing Data One-Hot Encoding		Protocol_icmp 1 2	Protocol_tcp	service_IRC	service_X11	service_Z39_50
		Step3 Do Classify	Step4 Evaluation Performance				
GaussianNB ExtraTree Linear SVC 5radient Boosti Accuracy Metrice			Accuracy Metrice	GaussianNB	ExtraTree	Linear SVC	Gradient Boosting

Task 6:Test the library and provide an example implementation of the interfaces

• Implementation of the Testing Interface

Task7: Testing the Misuse Attack Detection Model

Task7: Testing the Misuse Attack Detection Model

Conclusion

This project able to maintain the security of IoT data in NFV networks by identifying and diagnosing with high accuracy the most dangerous type of attack, which is the misuse attack in cloud services.

Future considerations

- 1. Improving Latency
- 2. Improving Power Usage
- 3. Improving Model and Binary size

Thank you for your attention