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Cloud computing has been widely adopted because it 
allows acquiring on-demand computing resources 

Machine Learning as a Service (MLaaS) has emerged as 
a flexible and scalable solution in cloud environments 
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MLaaS offers different types of resources and tools to train and deploy ML models 
  
 
 
 
 
  Neural Networks                 Deep Learning            Natural Language Processing 
 

 
 
 
The training process can consume many computational resources and time 
• The high-performance computing resources in the cloud can reduce training and 

testing time 

The remote infrastructure of the cloud reduces the problems of resources and 
implementation, but it introduces several privacy concerns in sensitive information 
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Security and privacy are significant challenges because data must be decrypted for 
analytics 

Privacy-Preserving Machine Learning as a Service 

Data security in cloud computing offers data protection from theft, leakage, deletion 
at levels of firewalls, penetration testing, obfuscation, tokenization, Virtual Private 
Networks (VPN), etc. 

The use of third-party services can bring several cybersecurity risks 
• Traditional encryption does not solve the problem because ML model requires full 

access to confidential data 
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Homomorphic Encryption (HE) and Secure Multi-party Computation (SMC) are 
ways to address vulnerabilities of data processing 

HE is an encryption system that enables the processing of information on ciphertexts 

Privacy-Preserving Machine Learning as a Service 
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The use of HE schemes is a possible solution to the security problem during the processing of information 
HE is an encryption system that enables the processing of information on ciphertexts
The figure shows a cloud environment with HE
      Data are always protected because they do not have to be decrypted for processing
HE schemes strengthen several aspects of security in the cloud 
       It provides certainty to the user about the use of cloud environments
As an example, let 𝑚_1 and 𝑚_2 be messages, 𝑐_1 and 𝑐_2 be their corresponding ciphertexts
An additively HE produces the ciphertext 𝑐_+=𝑐_1+𝑐_2 that can be decrypted to 𝑚_1+𝑚_2
Similarly, a multiplicatively HE generates the ciphertext 𝑐_×=𝑐_1×𝑐_2 that is decrypted to 𝑚_1×𝑚_2
Both HEs obtain ciphertexts 𝑐_+ and 𝑐_×, without knowing 𝑚_1 and 𝑚_2
Conventional encryption cannot compute 𝑚_1+𝑚_2 and 𝑚_1×𝑚_2 without the decryption of 𝑐_1 and 𝑐_2 first



“Homomorphic” refers to a mapping between functions on the space of messages 
and ciphertexts 

• A function applied to ciphertexts provides the same (encrypted) result than its 
homomorphic function used in the messages they encrypt 

The system only uses publicly available information without risks of the data breach 

• No access to information in the ciphertext or any secret key 

HE implementation exhibits several limitations, the three main directions in this field 
are: 
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Homomorphic Encryption 

Neural Network      Deep Learning  

 Low efficiency                Small number of primitives                   ML models  



HE surveys consolidate significant contributions focusing on performance 
improvement, new approaches, applications, among others 

They provide knowledge foundation and general panorama to researchers interested 
in applying and extending HE approaches 
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Homomorphic Encryption for ML 

Table 1. Main topics of HE reviews 
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Vaikuntanathan [1]  ●   ●       
Armknecht et al. [2]  ● ● ● ●   ● 
Naehrig et al. [3]  ● ● ●   ● ● 
Archer et al. [4]      ●   ●   
Acar et al. [5]  ● ● ● ●     
Martins et al. [6]  ● ● ●       
Parmar et al. [7] ●   ●       
Shunmuganathan [8]  ●   ●       
Gentry [9] ● ●         
Aguilar-Melchor [10]  ●   ●     ● 
Hrestak and Picek [11]  ●     ● ●   
Moore et al. [12]  ●         ● 
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Homomorphic 
Encryption for ML 

Table 2. Comparative of HE approaches 

A small number of primitives have 
been developed for predicting and 
classifying confidential information 
using HE schemas 

The main goal is to enrich the MLaaS 
paradigm 
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Theoretical research in HE should be complemented with high-quality 
implementations  

Industrial and academic groups have been released several HE libraries in recent 
years 
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Homomorphic Encryption for ML 

Table 3. Comparison of commonly general-purpose HE libraries across their pros and cons 

Tool Support Pros Cons 

SEAL Microsoft 
Well-documented 
Easy security parameters 
setting 

Poor flexibility 
Limited number of supported schemes 

HElib IBM Efficient homomorphic 
operations 

Low bootstrapping performance 
Complicated security parameter setting 

TFHE Fast bootstrapping Poor performance for simple tasks 

PALISADE DARPA, MIT, 
UCSD, etc. 

Multiple HE schemes 
Cross-platform 

 Poor documentation and support cuHE Mass parallelism and high 
memory bandwidth of GPUs 

HEAAN Seoul National 
University 

Operations between rational 
numbers 

HE-transformer Intel Integration with deep learning 
libraries 

Extension of SEAL 
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Homomorphic Encryption for ML 
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An analysis shows the emerging interest of the research community in the 
construction of HE in handling highly sensitive data 

• Machine learning models to process over encrypted data 
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Fig. 2. Number of publications in the literature related to HE 

Fig. 1. Keywords related to HE concepts and specific 
applications in the HE area (five years) 
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Privacy-Preserving Neural Networks 
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Privacy-Preserving Neural Networks 

Function Model Approximation Method LR NN 

Sigmoid 

2, 3   ● Chebyshev polynomials 
2 ●   Taylor series, area 
1 ●   Taylor series 

3, 5, 7 ●   Taylor series 
9   ● Taylor series, Padé 

Tanh 
2, 3   ● Chebyshev polynomials 
9   ● Taylor series, Padé 

3, 4   ● Chebyshev polynomials 

ReLU 

2,3,4,5,6   ● Least squares polynomial fit (soft.) 
2, 3   ● Derivative of ReLU 
1   ● Taylor series, Padé 

3, 4   ● Chebyshev polynomials 
2   ● Polytope-based method  

Swish 3,4   ● Chebyshev polynomials 
2   ● Polytope-based method 
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Fig. 3. Activation functions 

Table 4. Summary of activation function approximations 
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Privacy-Preserving Neural Networks 

“The computational cost of seven-layer CNN training is 
around one hour with a conventional CPU, while to train 

the same CNN with HE requires around a year [13]” 
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Privacy-Preserving Neural Networks 
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Residue Number System (RNS) is a widely known variation of finite ring isomorphism that represents original numbers as residues with respect to a moduli set.
In RNS, a tuple (𝑎_1, 𝑎_2, . . . ,𝑎_𝑛 ) describes an integer number X∈[0, 𝑃−1) where the range 𝑃=∏1_1^𝑛▒𝑝_𝑖  is defined by a set of pairwise co-prime numbers {𝑝_1,𝑝_2,…,𝑝_𝑛}.



Logistic Regression 
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Выступающий
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Logistic Regression (LR) is a standard technique in supervised machine learning to classify data
The statistical method models a binary dependence variable using the sigmoid function
The inference of LR considers the logistic function, a set of weights and information of elements
A value between 0 and 1 is obtained of the inference of logistic regression
A threshold defines the binary classification value of the element
The training phase of LR focuses on finding 𝜃^∗, the values of 𝜃 that minimizes the number of errors in the prediction
𝜃^∗ is used to estimate the binary classification of new data



Privacy-Preserving Logistic Regression 
•
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Encryption Degree of polynomial 
approximation  Gradient descent Metrics Library Datasets Ref. 

Paillier, LWE, Ring-LWE 2 BGD F-score, AUC - Pima, SPECTF [14] 
Ring-LWE 1 GD-FHN ROC, accuracy NFLlib iDASH, financial data [15] 

Ring-LWE 3,5, 7 NAG AUC, accuracy HEAAN iDASH, lbw, mi, nhanes3, pcs, uis [16] 

Ring-LWE,  RNS 7 NAG AUC, accuracy HEAAN Lbw, uis [17] 
Ring-LWE 5 NAG AUC HEAAN MNIST, credit [18] 
- - BGD  AUC - NIDDK [19] 

Table 5. Main characteristics of HE schemas for logistic regression  

Algorithm 1. Batch Gradient Descent 

1 
2 
3 

We propose a data confidentiality LR for cloud service with HE based on RNS 

Выступающий
Заметки для презентации
Gradient Descent (GD) is an optimization algorithm to minimize the error function or objective function
The optimization process updates 𝜃 according to 𝛻_𝜃 𝐽(𝜃), partial derivate of 𝐽(𝜃)
The learning rate 𝛼 defines the dimension of the steps
Batch Gradient Descent (BGD) is the basic version of GD
     The update rule of BGD takes into account the entire training dataset
     The advantages of BGD are simplicity and 
     Converging to the global minimum for convex error surfaces and local minimum for non-convex surfaces



Privacy-Preserving Logistic Regression 
Four main variants of the original GD are commonly used in the literature:  
• Batch Gradient Descent (BGD) 
• Stochastic Gradient Descent (SGD) 
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Algorithm 4. Nesterov Gradient Descent 
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Algorithm 3. Momentum Gradient Descent 
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• Momentum Gradient Descent (MGD) 
• Nesterov Accelerated Gradient (NAG) 

Algorithm 2. Stochastic Gradient Descent 
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Gradient Descent (GD) is an optimization algorithm to minimize the error function or objective function
The optimization process updates 𝜃 according to 𝛻_𝜃 𝐽(𝜃), partial derivate of 𝐽(𝜃)
The learning rate 𝛼 defines the dimension of the steps
Batch Gradient Descent (BGD) is the basic version of GD
     The update rule of BGD takes into account the entire training dataset
     The advantages of BGD are simplicity and 
     Converging to the global minimum for convex error surfaces and local minimum for non-convex surfaces
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We propose a data confidentiality LR for cloud service with HE based on RNS 

Algorithm 5. HE-RNS Batch Gradient Descent 
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Gradient Descent (GD) is an optimization algorithm to minimize the error function or objective function
The optimization process updates 𝜃 according to 𝛻_𝜃 𝐽(𝜃), partial derivate of 𝐽(𝜃)
The learning rate 𝛼 defines the dimension of the steps
Batch Gradient Descent (BGD) is the basic version of GD
     The update rule of BGD takes into account the entire training dataset
     The advantages of BGD are simplicity and 
     Converging to the global minimum for convex error surfaces and local minimum for non-convex surfaces
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Experimental analysis considers 30 configurations for each dataset to compare the 
performance and quality of our solution with the state of the art algorithms 

• Six datasets from medicine and genomics 
• Polynomial approximation of logistic function 
• 5-fold cross-validation 
• A scalar factor of 16 bits 
• Seven pair-wise relatively primes 
• Iterations: 5, 10, 15, 20, 25 
• Learning rate: 1.6, 1.1, 0.6, 0.1, 0.06, 0.01, 0.006, 0.001, 0.0006, 0.0001 

Configuration setup 

0 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 

1 

-4 -3 -2 -1 0 1 2 3 4 

g(x) g1(x) 

Fig. 5. Sigmoid and approximation functions 



24 Privacy-Preserving Logistic Regression as a Cloud Service based on Residue Number System 

We consider six datasets widely used in the literature  
1. Low Birth Weight (Lbw) dataset consists of information about births to women in an 

obstetrics clinic 
2. Myocardial Infarction (Mi) is a heart disease dataset 
3. National Health and Nutrition Examination Survey (Nhanes3) includes a database of 

human exposomes and phenomes 
4. The Indian’s diabetes dataset (Pima) 
5. Prostate Cancer Study (Pcs) dataset of patients with and without cancer of prostate 
6. Umaru Impact Study (Uis) dataset stores information about resident treatment for drug 

abuse 

Configuration setup 

Dataset N Features N-Training N-Testing 
Lbw 189 9 151 38 
Mi 1,253 9 1,002 251 
Nhanes3 15,649 15 12,519 3,130 
Pima 768 8 614 154 
Pcs 379 9 303 76 
Uis 575 8 460 115 

Table 6. Datasets characteristics and size of sets 
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Results 

Name 
Lbw Mi Nhanes3 Pcs Pima Uis Average Lbw Mi Nhanes3 Pcs Pima Uis Average 

HE-BGD-RNS 0.7358 0.9388 0.8112 0.7445 0.6983 0.5483 0.7557 71.84 88.87 78.89 66.05 67.79 74.43 76.02 
BGD 0.7353 0.9357 0.7961 0.7406 0.6964 0.5458 0.7507 71.84 89.02 78.86 66.14 67.65 74.35 76.04 
HE-SGD-RNS 0.7541 0.9421 0.9029 0.8151 0.8505 0.6118 0.8052 73.42 88.9 84.51 66.32 74.7 74.81 77.59 
SGD 0.7618 0.9445 0.903 0.8162 0.8487 0.6158 0.8083 73.86 89.39 84.3 66.32 74.7 74.75 77.72 
HE-MGD-RNS 0.7552 0.9445 0.902 0.8143 0.8508 0.6116 0.8055 72.89 88.95 84.53 66.01 74.66 74.72 77.42 
MGD 0.7634 0.9445 0.903 0.8169 0.8488 0.6152 0.8086 73.86 89.42 84.33 66.36 74.77 74.72 77.74 
HE-NAG-RNS 0.7552 0.9445 0.902 0.8143 0.8508 0.6115 0.8055 72.81 88.95 84.53 66.01 74.7 74.72 77.40 
NAG 0.763 0.9445 0.903 0.817 0.8489 0.6154 0.8086 74.04 89.42 84.33 66.36 74.79 74.72 77.77 
HE-NA-LR [16] 0.689 0.958 0.717 0.74 - 0.603 0.7414 69.19 91.04 79.22 68.27 - 74.44 76.43 
HE-SS-LR [14] - - - - 0.8763 - - - - - - 80.7 - - 

Table 7. Average AUC and A 
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Results 
Table 8 present the best values of AUC and A, each value represents the best θ of 1,500 

execution: learning rates × iters × initial values 

Name 
Lbw Mi Nhanes3 Pcs Pima Uis Average Lbw Mi Nhanes3 Pcs Pima Uis Average 

HE-BGD-RNS 0.7981 0.9485 0.8509 0.8045 0.795 0.585 0.7974 78.95 90.44 79.74 77.63 74.66 76.52 80.66 
BGD 0.8013 0.947 0.8317 0.8061 0.7946 0.5846 0.7941 78.95 90.84 79.36 77.63 73.97 76.52 80.66 
HE-SGD-RNS 0.7949 0.9536 0.9039 0.8357 0.8602 0.6604 0.8297 81.58 91.24 86.01 78.95 79.45 76.52 82.86 
SGD 0.7949 0.9557 0.9039 0.8341 0.86 0.66 0.8297 81.58 91.24 86.17 77.63 80.14 76.52 82.63 
HE-MGD-RNS 0.8125 0.9541 0.9033 0.8341 0.8608 0.6632 0.8334 81.58 90.84 85.88 78.95 79.45 79.13 83.28 
MGD 0.8045 0.9562 0.9039 0.8518 0.8627 0.6596 0.8352 81.58 91.24 85.88 77.63 78.77 77.39 82.74 
HE-NAG-RNS 0.8013 0.9536 0.9033 0.8349 0.8596 0.6584 0.8303 81.58 91.24 85.94 78.95 79.45 76.52 82.85 
NAG 0.8077 0.9574 0.9039 0.8486 0.8631 0.6616 0.8358 84.21 91.24 85.97 77.63 79.45 76.52 83.11 
HE-NA-LR 0.689 0.958 0.717 0.740 - 0.603 0.7414 69.19 91.04 79.22 68.27 - 74.44 76.43 
HE-SS-LR - - - - 0.8763 - - - - - - 80.7 - - 

Table 8. Best AUC and A 
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Future work 
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