Разработка внешнего модуля голосового управления элементами "умного" дома

Научный руководитель: к.т.н., доцент каф. ЭВМ Топольский Д. В. Автор: Григорьев А. Ю. Группа КЭ-405

Челябинск 2020

Актуальность

2

Цель и задачи

Создать программно-аппаратный комплекс для интеграции в системы умного дома, способное распознавать голосовые команды и интерпретировать их в инструкции для устройств умного дома

Задачи:

- проанализировать рынок на предмет подобных устройств, выявить их качества;
- проанализировать стандарты, протоколы и устройства умного дома, выявить способы взаимодействия с ними;
- подобрать микроконтроллер и платформу, которые оптимально подходит для требований к таким системам;
- собрать рабочий прототип устройства, разработать необходимое для интеграции ПО.

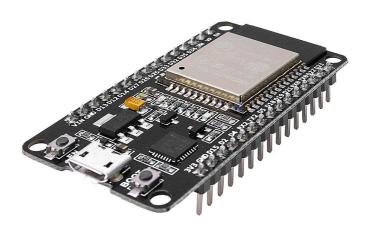
Анализ предметной области. Обзор аналогов

Колонки "умного" дома

Apple Homepod

Google Home

Яндекс.Станция



Amazon Alexa

Результаты обзора

Критерий	Apple Homepod	Google Home	Яндекс.Станция	Amazon Echo
Наличие программной платформы умного дома	Да	Да	Да	Да
Видео-интерфейс HDMI	Нет	Нет	Да	Нет
Продвинутый микрофонный массив	Да	Нет	Да	Да
Интерфейс на русский языке	Нет	Нет	Да	Нет
Стоимость	\$349	\$139	₽10 990	\$99

Анализ основных технологических решений. Микроконтроллер и микрофон.

ESP32 MAX9814

Анализ основных технологических решений. Хаб умного дома

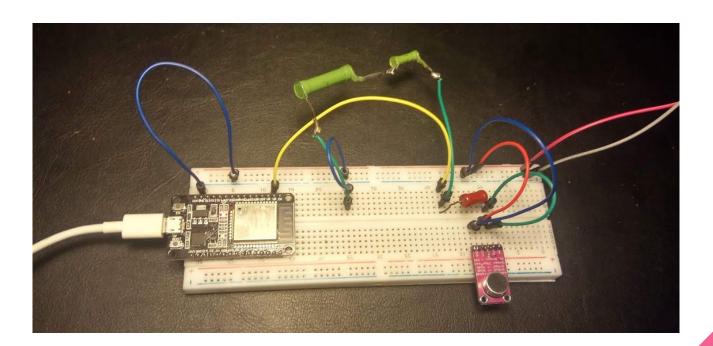
- Есть Python-библиотека для взаимодействия
- Возможность интегрирования с более чем 200 технологий и систем
- Можно запустить на: Linux, macOS, Windows, Raspberry Pi, PINE64, Docker, Synology.

Анализ основных технологических решений. Технология распознавания речи

	Yandex Speech Kit	Kaldi ASR(kaldi-ru-0.7)	Google Speech API
WER	0,3	0,36	0,31

Функциональные требования. Схема взаимодействия объектов программно-аппаратного комплекса

Технологические требования


Требования к модулю:

- 1.Размеры устройства: не более 100(Ш)х100(Д)х30(В) мм;
- 2.Вес устройства: не более 200 г;
- 3. Микрофон с усилением более 20 дБ и автоматической регулировкой усиления;
- 4.WI-FI: 5 ГГц;
- 5.Питание от сети 220 В.

Требования к серверу:

- 1.Процессор: архитектура: x86, x64;
- 2. Частота: от 1 Гц;
- 3.03У: от 1 Гб;
- 4.ПЗУ: от 4 Гб;
- 5.0C: Linux
- 6.ПО: Интерпретатор языка Python

Реализация. Прототип

Реализация. Подключение к Wi-Fi

Тестирование

- 1. 21 600 файлов
- 2. Длительность каждого файла 5 сек
- 3. Общая длительность 30 часов

WER = 0.4955446865273455

Спасибо за внимание!